

Timeline of the Multicharged Ion Research Facility (MIRF)

- ORNL ECR ion source, since 1984, dedicated to atomic collisions physics, MIRF established
- CAPRICE ECR ion source, since 1992
- MIRF upgrade project

Extend upper energy limit to 250xq keV by placing new all permanent magnet ECR ion source on 250 kV high voltage platform

- expands capabilities of present experiments
- opens door to new areas of study
- completed 2005

Extend lower energy limit to few eVxq by injecting CAPRICE beams into a floating beamline

- efficient extraction and beam transport with subsequent deceleration at experimental end station
- simplifies present decelerated beams surface scattering experiment
- makes possible new experiments at very low energies
- completed 2007

Develop linear electrostatic trap end station

- fragmentation imaging for in-situ collisions of cold molecular ions with electrons and neutrals
- Multisecond trapping lifetimes achieved Oct 2009

Present MIRF layout

Atomic Collision Studies at MIRF

Electron Collisions (Electron X-beam, MEIBEL, ICCE)

- Excitation and ionization of atomic ions
- Dissociation and ionization of molecular ions
- Ion beam excited state populations
- Dielectronic recombination of atomic ions
- Dissociative recombination of molecular ions
- Collisions with cooled ions (fragment imaging)

Heavy Particle Collisions (Merged beam , ICCE, COLTRIMS)

- Charge exchange between neutral atoms and molecules and atomic and molecular ions
- · Very low relative velocities for heavy projectiles
- X-ray emission measurements of low energy CEX by HCI
- Highly charged ion neutralization during large angle projectile scattering
- Projectile excited state characterization
- Molecular dissociation
- · Collisions with cooled ions (fragment imaging)

Low Energy Ion-Surface Scattering

- · Chemical sputtering of graphite by low-energy D ions
- Neutralization of highly-charged ions in interactions
 with conducting and insulating crystals
- · Charge-state distributions of scattered ions and neutrals
- "Soft" Molecular dissociation
- C-14 Detection

High Energy Ion-Surface Scattering

- Multicharged ion transmission/neutralization in nanocapillaries
- Multicharged projectile neutralization in grazing surface interactions
- Projectile excitation during grazing interactions
 with periodic (insulator) lattices
- Molecular dissociation interactions

HV platform permanent magnet ECR ion source (Denis Hitz & Grenoble group)

0.9 T Tesla hexapole 1.8 Tesla w/ iron plug 12.5 – 14.5 GHz 750 W TWT Ar: 8+ 510 μA; 11+ 90 μA Xe: 20+ 25 μA; 30+ 1 μA O: 1-3+ 700 μA; 7+ 90 μA

Relocation of TP to reduce B field

Modified Pierce geometry puller to reduce insulator sputtering

High voltage platform layout

night energy beam line elements

>90% transmission to end stations from 20 - 270 kV

High energy beam envelope:

 accel column provides main focusing strength for waist to waist beam transport

Low energy beam envelope: - 2 einzel lenses provide

waist to waist beam transport

Platform and high energy beam line control system (A-B ControlLogix/EPICS)

Ground chassis

Ethernet bridges among ControlLogix Chassis and to EPIX PC

The floating beam line injected by CAPRICE

Low energy floating beam line HV isolation details

- Beamline supports on insulating Delrin blocks
- All pumps (1 DP, 1 TP, and 2 cryopumps) and ion gauges at ground potential, isolated from beamline HV by Delrin DC breaks
- All vacuum gate valves at HV: valve solenoids at ground potential
- 3.2 mm thick Teflon sheet between vacuum box and magnet for HV isolation

Floating beam line and ion source control screen with charting feature enabled

CAPRICE / Floating Beam Line Control System Network Diagram

Low energy beam line - Control System Features

- Group3 ControlNet fiber-optically-linked distributed control system
- Small intelligent outstations (Device Interfaces or DI's) contain I/O boards
- A Loop Controller (LC) card handles communications on the fiber loop
- Group3 virtual instruments (VI) for LABVIEW handle all set-up tasks, and access all I/O data in LC
- Implements open source LuaVIEW data logging package

process variables (tags) logging using time-, event-, or threshold-based algorithms alarms or warnings if limit values are exceeded mass scan utility charting functions control variable save and restore functions

Low energy sputtering experiment needs well characterized, intense molecular ion beams

Correction for the ECR plasma potential is crucial for low energy experiments

ECR source chemistry produces molecular ion species for Electron X-beam Experiment

Ion-atom Merged Beams Experiment uses multi-charged as well as molecular ion beams

limits max source pressure, and therefore max D_3^+ current

The new Ion Cooling and CharactErization (ICCE) Trap End Station

- lifetime studies of excited molecular and multi-charged ions
- neutral fragment imaging
- studies of dissociative recombination and capture of molecular ions

