Author: Forck, P.
Paper Title Page
MOPD05 Beam Diagnostic Layout for SIS100 at FAIR 41
 
  • M. Schwickert, P. Forck, T. Hoffmann, P. Kowina, H. Reeg
    GSI, Darmstadt, Germany
 
  The SIS100 heavy ion synchrotron will be the central machine of the FAIR (Facility for Antiprotons and Ions Research) project currently designed at GSI. The unique features of SIS100, like e.g. the acceleration of high intensity beams of 2.5·1013 protons and 5·1011 Uranium ions near the space charge limit, the anticipated large tune spread, extreme UHV conditions of the cryogenic system for superconducting magnets and fast ramp rates of 4 T/s, make challenging demands on the beam diagnostic components. This contribution describes the conceptual design for SIS100 beam diagnostics and reports on the present status of prototype studies. Exemplarily the progress concerning beam position monitors, beam current transformers and beam-loss monitors is presented.  
 
MOPD16 Advanced Digital Signal Processing for Effective Beam Position Monitoring 74
 
  • D.A. Liakin
    ITEP, Moscow, Russia
  • P. Forck, K. Lang, R. Singh
    GSI, Darmstadt, Germany
 
  A latest experience in digital signal processing of BPM data obtained in synchrotrons of ITEP and GSI is discussed. The data in ITEP was collected by BPM processor prototype while the SIS18 in GSI uses a renovated digital system. Due to different concept of BPM architectures on those facilities it is possible to compare algorithms oriented to certain hardware. Several algorithms of position detection are compared to each other. Performances of ‘collective’ and partly distributed algorithms are estimated. Data reduction methods and visualization solutions are considered. Finally low- and wideband data evaluation for longitudinal phase space is presented.  
poster icon Poster MOPD16 [13.416 MB]  
 
MOPD53 Scintillation Screen Investigations for High Energy Heavy Ion Beams at GSI 170
 
  • P. Forck, C.A. Andre, F. Becker, R. Haseitl, A. Reiter, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • W. Ensinger, K. Renuka
    TU Darmstadt, Darmstadt, Germany
 
  Funding: Funded by the German Ministry of Science (BMBF) under contract No. 06DA9026
Various scintillation screens were irradiated with high energy ion beams as extracted from the GSI synchrotron SIS18. Their imaging properties were studied with the goal to achieve a precise transverse profile determination. Scintillation images were characterized with respect to the light yield and statistical moments of the light distribution i.e. imaged beam width and shape. To study the scintillation properties over a wide range of intensities a 300 MeV/u Uranium ion beam with 104 to 109 particles per pulse was applied. Sensitive scintillators, namely CsI:Tl, YAG:Ce, P43 and Ce-doped glass were investigated for lower beam currents. Ceramics like Al2O3, Al2O3:Cr, ZrO2:Y and ZrO2:Mg as well as Herasil-glass were studied up to the maximum beam currents. For the various screens remarkable differences have been observed, e.g. the recorded profile width varies by nearly a factor of two. The obtained results serve as a basis for an appropriate choice of scintillator materials, which have to cope with the diversity of ion species and intensities at FAIR.
 
poster icon Poster MOPD53 [1.897 MB]  
 
MOPD57 Quantitative Scintillation Screen Studies at GSI-LINAC and Related Model Calculations 179
 
  • E. Gütlich, P. Forck, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • W. Ensinger
    TU Darmstadt, Darmstadt, Germany
 
  Scintillating screens are commonly used at accelerator facilities, however their imaging quality are not well understood, especially for high current ion beam operation. Several types of inorganic scintillators were investigated for various ion species and energies between 4.8 and 11.4 MeV/u. To validate the imaging quality of the scintillators a scraper scan method was established. For Al2O3 with a Ca beam of 4.8 and 11.4 MeV/u and a constant beam flux (ions/cm²/s), these methods are compared. For 4.8 MeV/u the results are in good agreement, while for 11.4 MeV/u the screen image does not reflect the beam distribution. A microscopic model is under development taking the properties of the fast electrons generated by the primary interaction into account. For Al2O3 this model can describe the observed saturation effect. Spectroscopic investigations were performed, to determine the influence of the ion beam intensity on the luminescence spectra emitted by the materials. No significant dependence on the spectrum with respect to the beam intensity was found for most of the scintillators.  
 
MOPD60 Beam Induced Fluorescence (BIF) Monitors as a Standard Operating Tool 185
 
  • C.A. Andre, F. Becker, H. Bräuning, P. Forck, R. Haseitl, R. Lonsing, B. Walasek-Höhne
    GSI, Darmstadt, Germany
 
  For high current operation at the GSI Heavy Ion UNILAC non intercepting methods for transverse beam profile determination are required. The Beam Induced Fluorescence (BIF) Monitor, an optical measurement device based on the observation of fluorescent light emitted by excited gas molecules was brought to routine operation. Detailed investigations were conducted for various beam parameters to improve the electronics and the optical setup. Up to now, four BIF monitor stations (for detection of both, horizontal and vertical beam profiles) were installed at UNILAC and two additional setups are planned. This contribution reports on first upgrades of the BIF monitors with a Siemens PLC for FESA-based slow controls and hardware protection procedures. The versatile control and display software ProfileView is presented as an easy-to-use and stable beam diagnostic tool for the GSI operating team.  
poster icon Poster MOPD60 [3.060 MB]  
 
MOPD69 Tune Measurements with High Intensity Beams at SIS-18 206
 
  • R. Singh, P. Forck, W. Kaufmann, P. Kowina
    GSI, Darmstadt, Germany
  • R. Singh
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  Funding: This work is supported by DITANET (novel DIagnostic Techniques for future particle Accelerators: A Marie Curie Initial Training NETwork), Project Number ITN-2008-215080
To achieve high current operation close to the space charge limit in a synchrotron, a precise tune measurement during a full accelerating cycle is required. A tune measurement system that was recently commissioned at GSI synchrotron SIS-18 allows for online evaluation of the actual tune. This system consists of three distinct parts; an exciter which provides power to excite coherent betatron oscillations of the beam. The BPM signals thus induced are digitized by fast ADCs at 125 MSa/s and then the post processing electronics integrates the data bunch by bunch to obtain one position value per bunch. Subsequently base band tune is determined by Fourier transformation of the position data. The tune variation during acceleration for various beam conditions was measured using this system and is discussed. A detailed investigation of the incoherent tune shift was conducted with Uranium ion beams at the injection energy of 11.6 MeV/u. The results show the influence of beam current on the tune spectrum. In addition, the effects of the measurement method on the beam emittance and beam losses are discussed.
 
 
TUPD05 Diagnostic Scheme for the HITRAP Decelerator 311
 
  • G. Vorobjev, C.A. Andre, W.A. Barth, E. Berdermann, M.I. Ciobanu, G. Clemente, L.A. Dahl, P. Forck, P. Gerhard, R. Haseitl, F. Herfurth, M. Kaiser, W. Kaufmann, H.J. Kluge, N. Kotovski, C. Kozhuharov, M.T. Maier, W. Quint, A. Reiter, A. Sokolov, T. Stöhlker
    GSI, Darmstadt, Germany
  • O.K. Kester, J. Pfister, U. Ratzinger, A. Schempp
    IAP, Frankfurt am Main, Germany
 
  The HITRAP linear decelerator currently being set up at GSI will provide slow, few keV/u highly charged ions for atomic physics experiments. The expected beam intensity is up to 105 ions per shot. To optimize phase and amplitude of the RF systems intensity, bunch length and kinetic energy of the particles need to be monitored. The bunch length that we need to fit is about 2 ns, which is typically measured by capacitive pickups. However, they do not work for the low beam intensities that we face. We investigated the bunch length with a fast CVD diamond detector working in single particle counting mode. Averaging over 8 shots yields a clear, regular picture of the bunched beam. Energy measurements by capacitive pickups are limited by the presence of intense primary and partially decelerated beam and hence make tuning of the IH-structure impossible. The energy of the decelerated fraction of the beam behind the first deceleration cavity was determined to about 10 % accuracy with a permanent dipole magnet combined with a MCP. Better detector calibration should help reaching the required 1%. Design of the detectors as well as the results of the measurements will be presented.  
 
TUPD24 Design Status of Beam Position Monitors for the FAIR Proton Linac 356
 
  • C.S. Simon, F. Senée
    CEA/DSM/IRFU, France
  • G. Clemente, P. Forck, W. Kaufmann, P. Kowina
    GSI, Darmstadt, Germany
 
  Beam Position Monitors (BPM) based on capacitive buttons are designed for the FAIR Proton-LINAC, constructed as an extension of the existing GSI facility. This LINAC is aiming to produce a maximum design current of 70 mA at the 70 MeV energy with an accelerating frequency of 325 MHz. At 14 locations, the BPMs will measure the transverse beam position, the relative beam current and the mean beam energy by time-of-flight method. Depending of the location, the BPM design has to be optimized, taking into account an energy range from 3 MeV to 70 MeV, a short insertion and a beam pipe aperture changes from 30 mm to 50 mm. Some of BPMs will be mounted very close to the CH cavities and special care must be taken to suppress the pickup of the strong rf-field from that cavities. In this contribution, the status of the BPM design will be presented.  
 
TUPD51 Ionization Profile Monitors - IPM @ GSI 419
 
  • T. Giacomini, P. Forck
    GSI, Darmstadt, Germany
  • J.G. De Villiers
    iThemba LABS, Somerset West, South Africa
  • J. Dietrich
    FZJ, Jülich, Germany
  • D.A. Liakin
    ITEP, Moscow, Russia
 
  The Ionization Profile Monitor in the SIS18 is frequently used for machine development. The permanent availability and the elaborated software user interface make it easy and comfortable to use. Additional to the beam profile data the device records the data of synchrotron dc current, dipole ramp and accelerating rf properties. The trend curves of these data are shown correlated to the beam profile evolution for a full synchrotron cycle from injection to extraction with 100 profiles/s. The reliable function is based on the optimized in-vacuum hardware design, like the stable high voltage connections, the electric field box with very uniform field distribution and the uv-light based calibration system. The permanent availability is based on the convenient software interface using the Qt library. A new IPM generation was recently commissioned in the experimental storage ring ESR at GSI and one in the COSY ring at FZ-Jülich. These monitors are enhancements of the SIS18 multiwire IPM but equipped with an especially developed large area 50x100 mm2 optical particle detector of rectangular shape that is readout by a digital camera through a viewport.  
 
WEOA03 Detailed Experimental Characterization of an Ionization Profile Monitor 547
 
  • J. Egberts, P. Abbon, F. Jeanneau, J.-Ph. Mols, T. Papaevangelou
    CEA, Gif-sur-Yvette, France
  • F. Becker, P. Forck, B. Walasek-Höhne
    GSI, Darmstadt, Germany
  • J. Marroncle
    CEA/DSM/IRFU, France
 
  Funding: Marie Curie Fellowship by the EU
In the frame of the International Fusion Material Irradiation Facility (IFMIF), a prototype for a non-interceptive transverse beam profile monitor based on residual gas ionization (IPM) has been built and characterized in detail. We present results of test measurements performed at CEA Saclay with 80 keV protons in a cw beam of up to 10 mA and at GSI Darmstadt with pulsed Ca10+, Xe21+ and U28+ beams of up to 1.6 mA at 5 MeV/u. The effects of N2, and different rare gases in the pressure range from 4•10-7 mbar to 5•10-4 mbar have been investigated. The signal was read by different electronic cards, based on linear and logarithmic amplifiers as well as on charge integration. Furthermore the extraction voltage of the IPM-field-box was varied between 0.5 and 5 kV. Beam profiles were investigated with respect to signal intensity and profile shape and were compared to a SEM-grid and a Beam Induced Fluorescence monitor. Profiles of all monitors match nicely for the residual gases with differences in beam width well below 5%. Additional tests on the characteristics of the IPM have been performed and will be presented as well.
 
slides icon Slides WEOA03 [1.964 MB]