

Detailed Experimental Characterization of an Ionization Profile Monitor

Jan Egberts^{1,2,3}, Philippe Abbon¹, Fabien Jeanneau¹, Jacques Marroncle¹, Jean-Philippe Mols¹, Thomas Papaevangelou¹, Frank Becker⁴, Peter Forck⁴, Beata Walasek-Höhne⁴

¹⁾ CEA Saclay ²⁾ École Doctorale MIPEGE, Université Paris Sud XI ³⁾ Ditanet, FP7, Marie Curie ⁴⁾ GSI, Darmstadt

Outline

- IFMIF-EVEDA Accelerator
- IPM Characteristics
- IPM-Prototype
 - Design at CEA Saclay
 - Test at GSI Darmstadt
 - ✤ Test at CEA Saclay
- Conclusion

jan.egberts@cea.fr

IFMIF Accelerator

IFMIF: International Fusion Material Irradiation Facility

- Beam current: 2 x 125 mA cw deuterium
- Energy: 40 MeV
- Beam power: 2 x 5 MW

neutron source: 10¹⁷ n/s

IFMIF: International Fusion Material Irradiation Facility

- Beam current: 2 x 125 mA cw deuterium
- Energy: 40 MeV
- Beam power: 2 x 5 MW

neutron source: 10¹⁷ n/s

IFMIF-EVEDA: <u>Engineering</u> <u>Validation</u> <u>Engineering</u> <u>Design</u> <u>A</u>ctivities

Prototype limited to 1 x 125 mA cw @ 9 MeV, 1.125 MW

ran

saclay

jan.egberts@cea.fr

saclay

jan.egberts@cea.fr

IPM – Characteristics

Principle of Operation:

- Beam ionizes residual gas
- Electrons / ions are extracted by E-field
- Beam profile derived from ionization current
 degrader

IFMIF-EVEDA Challenges:

- Limited space
 - \Rightarrow Compact design (wrt. large aperture)
 - \Rightarrow no mag. guidance field possible
- ✤ High background radiation (~7 kSv/h close to the beam dump)

saclay

lrfu

saclay

IPM Prototype Design

- Charge collected on 32 strips with 1.25 mm pitch
- Uniform electric field required to conserve beam profile
- Prototype designed based on FEM E-field simulations*
- Internal dimensions: 61 mm x 59 mm x 40 mm
- Voltage applied: 5000 V (E = 833 V/cm)

read-out strips

X2 branch at GSI

saclay

jan.egberts@cea.fr

X2 branch at GSI

saclay

jan.egberts@cea.fr

Field Uniformity Test

IPM Linearity Profile Center [mm] 28 Move IPM in 2 mm steps 26 perpendicular to the beam 24 slope: 0.968 \pm 0.004 Plot profile center versus IPM 22 position 20 18 Linear response over all active 16 area 14 12 10 **Good field uniformity** 8 -10 -12 8 -2 2 **IPM Displacement [mm]**

Beam: 30 µA Ca¹⁰⁺

jan.egberts@cea.fr

Position Resolution

- Move IPM in 100 μm steps perpendicular to the beam
- Averaged over 60 ms (16.7 Hz)
- Plot profile center versus IPM position

IPM resolves well 100 µm profile shifts

- Fluctuation of beam center versus data acquisition time
- 120 μA Xe²¹⁺, 10⁻⁵ mbar N₂
- ✤ Plateau of < 100 µm at ~1kHz</p>

saclay

IFMIF

ototype

EVEDA

Ifmif Accel

jan.egberts@cea.fr

BIF Comparison

10^{-5} mbar N₂

BIF: <u>B</u>eam <u>Induced</u> <u>F</u>luorescence

BIF Monitor based on light emitted by atoms excited by the beam

BIF profiles acquired by *Frank Becker, GSI*

Irfu CCCC saclay

jan.egberts@cea.fr

lrfu

saclay

IPM Test at GSI

BIF Comparison

12

BIF Comparison

High pressure Helium

Profile broadening of BIF not observable

Electric Field Strength

- Profile width decreases with higher extraction fields
- Plateau at a few kV
- Effect stronger for molecular
 N₂ than for atomic noble
 gases
- E-field dominant at 500 1000 V/cm

Beam: 1 mA Xe²¹⁺

saclay

jan.egberts@cea.fr

Signal Amplification

- Total strip current plotted
 versus extraction voltage
- Signal rises linearly

Hypothesis: Secondary electron emission during ion collection

$$\Rightarrow \left| ec{E}
ight| \propto E_{_{KIN}} \propto SEM$$

Beam: 1 mA Xe²¹⁺

Irfu CCCC

saclay

IFMIF

rototype

EVEDA

Ifmif

Accele

jan.egberts@cea.fr

IPM Test at CEA Saclay

High Current Test

IPHI: Injecteur de Protons à Haute Intensité (I < 100 mA; E < 95 keV)

- Test at IPHI source
 - cw or pulsed
 - ✤ Low energy ⇒ high ionization cross section
 - No collimation \Rightarrow IPM is irradiated by beam
- IPM operational up to 10 mA cw
 (I_{loniz} comparable to IFMIF-EVEDA)
 - For I > 10 mA: tripping power supply probably due to primary particle bombardment
- IPM tested up to 20 mA in 10 % duty cycle

Irfu

saclay

Conclusion

- Design based on FEM studies of extraction field
- No mag. guidance field due to lack of space
- Test at GSI:
 - Extraction field highly uniform
 - Profile shifts of 100 μm resolvable
 - Good agreement with BIF profiles
 - Signal amplification probably due to secondary electron emission
- Test at CEA Saclay:
 - Profile taking at high current cw beams
- Design for large aperture IPM is finalized

lrfu

saclay ja

jan.egberts@cea.fr

Conclusion

Acknowledgements

Sincere thanks to the GSI beam diagnostics staff and the IPHI group that made the test possible!

The work is supported by DITANET, a Marie Curie Action of the E.U., contract PITN-GA-2008-215080.

Irfu CCC saclay

jan.egberts@cea.fr