Paper |
Title |
Page |
TUIOB01 |
Numerical Investigation of Stochastic Cooling at NICA Collider
|
52 |
|
- T. Katayama
GSI, Darmstadt
- I. N. Meshkov, G. V. Trubnikov
JINR, Dubna, Moscow Region
|
|
|
At the heavy ion collider NICA promoted at the Dubna, JINR, the stochastic cooling will play the crucial roles to manipulate the beam. The primary goal is to prevent the IBS diffusion effects to keep the high luminosity during the experimental cycle. The other main purpose is to accumulate the beam intensity up to several times 1·1010 from the injector NUCLOTRON with use of barrier bucket method. With this method, the short bunch formation is not necessary in the injector NUCLOTRON, and is transferred to the collider as a long bunch condition. After the BB accumulation the coasting beam is adiabatically bunched with the help of RF field and the stochastic cooling. In the present paper the detailed simulation results are presented for the above three process (mainly longitudinal freedom) .
|
|
|
Slides
|
|
TUIOB02 |
Simulations of Stochastic Cooling of Antiprotons in the Collector Ring CR
|
58 |
|
- C. Dimopoulou, A. Dolinskii, T. Katayama, F. Nolden, C. Peschke, M. Steck
GSI, Darmstadt
- D. Möhl, L. Thorndahl
CERN, Geneva
|
|
|
The Collector Ring at FAIR will be equipped with pertinent stochastic cooling systems in order to achieve fast cooling of the hot secondary beams, antiprotons and rare isotopes, thus profiting from the repetition rate of the SIS100 synchrotron. Detailed simulations of the system performance are needed for optimization as well as input for the users of the CR pre-coooled beams, e.g. HESR. We presently focus on the antiproton cooling in the band 1-2 GHz. After a short overview, results from Fokker-Planck simulations with the CERN code of the momentum cooling of antiprotons will be presented. The performance of the betatron cooling of antiprotons, which has to proceed simultaneously with the momentum cooling, was calculated separately by means of an analytical model. First results and their implications will be discussed, including an outlook to future simulation work.
|
|
|
Slides
|
|
TUCOB01 |
Stochastic Cooling Project at the Experimental Storage Ring, CSRe at IMP
|
64 |
|
- J. X. Wu, J. W. Xia, Y. Zhang
IMP, Lanzhou
- F. Caspers
CERN, Geneva
- T. Katayama, F. Nolden
GSI, Darmstadt
|
|
|
Stochastic cooling at the experimental Cooler Storage Ring, CSRe at the Institute of Modern Physics (IMP) in China, will be used mainly for the experiments with radioactive fragment beams. Those RI beams arrive from the fragment separator with the emittance of 20-50 mm. mrad and the momentum spread Dp/p of ± 0.5~1.0 %. The equipped electron cooler is not able to cool down this hot beam within enough short period. Stochastic cooling is effective for these RI beams to reduce the emittance to less than 5 mm.mrad and Dp/p of 5·10-4 within 2-20 sec. After the stochastic pre-cooling, the electron cooling will further cool down the emittance and Dp/p within several seconds. The paper gives the design of the stochastic cooling system and the simulation results. The new developed forward traveling wave structure is presented as well as the measured results of test model.
|
|
|
Slides
|
|
TUPS14 |
Simulation Study of Stochastic Cooling at CSRe IMP
|
|
|
- X. J. Hu, H. Jia, J. X. Wu, J. W. Xia, Y. J. Yuan, Y. Zhang
IMP, Lanzhou
- T. Katayama
GSI, Darmstadt
|
|
|
The stochastic cooling of Radio Isotope beam is planned at the storage ring CSRe at the Institute of Modern Physics, Lanzohu in China. The stochastic cooling is planned as a pre-cooling of the electron cooling. The initial transverse emittance is assumed as 30 Pi mm.mrad, and the relative momentum spread is ± 5·10-3. The particle number is as small as 5·103. The palmer method is conceived as the PU and Kicker are installed at the finite dispersion section of the bending magnet chamber. In the present paper, details of simulation results of longitudinal and transverse cooling process are discussed.
|
|
TUPS15 |
The Stochastic Cooling System of HESR
|
129 |
|
- R. Stassen, H. Stockhorst
FZJ, Jülich
- T. Katayama
GSI, Darmstadt
- L. Thorndahl
CERN, Geneva
|
|
|
The HESR is the high energy storage ring (1.5-15 GeV/c) for antiprotons at the FAIR facility (Facility for Antiprotons and Ion Research) in Darmstadt (GSI). Stochastic cooling in the HESR is necessary not only during the experiments to fulfill the beam requirements, but also during the accumulation due to the postponed RESR. Extensive simulations and prototype measurements have been carried out to optimize the HESR stochastic cooling system with the new slot-ring couplers. The system design is now in the final construction phase for the mechanical tank layout and all active RF-components. First results of the optical notch-filter with automated frequency control and the 4-6 GHz slot-ring couplers will be presented.
|
|
TUPS16 |
An Improved Forward Travelling Wave Structure Design for Stochastic Cooling at Experimental Cooler Storage Ring (CSRe) at the Institute of Modern Physics (IMP) in China
|
132 |
|
- Y. Zhang, J. X. Wu
IMP, Lanzhou
- F. Caspers, L. Thorndahl
CERN, Geneva
- T. Katayama, F. Nolden
GSI, Darmstadt
|
|
|
An improved forward travelling wave (TW) structure as the pick-up/kicker is designed for the stochastic cooling to match the field waves (phase) velocity to that of the beam. The theoretical analysis is performed together with the simulations of the propagation characteristics. Using CST Microwave Studio (CST MWS), the simulated results, including phase velocity, characteristics impedance, and distributions of the longitudinal fields, are implemented and compared with the experimented results. The improved forward TW structure can be satisfied the requirements of stochastic cooling project at CSRe, which the phase velocity is closed to 0.70 (matching the desired beam energy of 400 MeV/u) and the characteristics impedance is 17 ohm.
|
|
TUPS19 |
Simulation Study of Barrier Bucket Accumulation with Stochastic Cooling at the GSI ESR
|
136 |
|
- T. Katayama, F. Nolden, G. Schreiber, M. Steck
GSI, Darmstadt
- T. Kikuchi
Nagaoka University of Technology, Nagaoka, Niigata
- H. Stockhorst
FZJ, Jülich
|
|
|
The beam accumulation experiments with use of barrier bucket cavity and stochastic cooling was successfully performed at the ESR, GSI. The two methods of barrier voltage operation, moving barrier and fixed barrier cases were tried, and for some cases the electron cooling was additionally employed as well as the stochastic cooling. In the present paper, the beam accumulation process are simulated with particle tracking method where the cooling force (stochastic and electron cooling), the diffusion force and the barrier voltage force are included as well as the IBS diffusion effects. The simulation results are well in agreement with the experimental results.
|
|
TUPS20 |
Demonstration of Longitudinal Stacking in the ESR with Barrier Buckets and Stochastic Cooling
|
140 |
|
- M. Steck, C. Dimopoulou, B. Franzke, O. E. Gorda, T. Katayama, F. Nolden, G. Schreiber
GSI, Darmstadt
- I. N. Meshkov, A. O. Sidorin, G. V. Trubnikov
JINR, Dubna, Moscow Region
- D. Möhl
CERN, Geneva
- R. Stassen, H. Stockhorst
FZJ, Jülich
|
|
|
Fast longitudinal beam accumulation has been demonstrated in the ESR at GSI with an Ar18+ beam coming from the synchrotron SIS18 at 400 MeV/u. Continuous application of stochastic cooling in all three phase space directions, merges the stack with the new injected bunch. Longitudinal beam compression was achieved by using either short barrier bucket rf pulses or by successive injections onto the unstable fixed point of the rf bucket at h=1. This recent experiment in the ESR provides the proof of principle for the planned longitudinal stacking of pre-cooled antiprotons in the HESR, injected from the CR.
|
|