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Required performance of CR stochastic cooling
Short bunch of hot secondary beam from production target into the CR
After bunch rotation and adiabatic debunching the δp/p is low enough
to apply stochastic cooling
Fast 3D stochastic cooling required to profit from production rate of secondary beams

Antiprotons
3 GeV,  108 ions

Rare isotopes
740 MeV/u,  109 ions

δp/p (rms) εh,v (rms)
π mm mrad

δp/p (rms) εh,v (rms)
π mm mrad

Before cooling 0.35 % 45 0.2 % 45

After cooling 0.05 % (*) 1.25 (*) 0.025 % 0.125

Phase space reduction 9x103 1x106

Cooling down time ≤ 9 s ≤ 1 s

Cycle time 10  s 1.5 s

(*) 20% lower (if possible) for HESR as accumulator ring  (instead of RESR)
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Overview of the CR stochastic cooling systems
Systems  in frequency band 1-2 GHz
Pickup Kicker pbars RIBs Method

PH KH hor. hor., 
final stage

difference PU

PV KV vert. vert., 
final stage

difference PU

PH+PV KH+KV long. long., 
final stage

Sum PU  
+  notch filter

PP KH ----- hor. + long.,
first stage

Palmer:
difference PU
at high D

PP KV ---- vert.,
first stage

difference PU 

System in frequency band 2-4 GHz   (future option)
P2-4 K2-4 long. -------- Sum PU  

+  notch filter

Main issue for pbars:  increase ratio

noise thermal
)Q ( signalSchottky 2∝
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Principle of betatron cooling & basic ingredients

1925-2011

''rms'' theory (analytical model)
( Fokker-Planck equation for )

Phase advance PU-K ≈ 900

High amplification needed, 
electronic gain ~ 10 7 (140 dB)
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System gain g = PU response x Electronic gain x K response ~ 10-2

Coherent term= cooling force x undesired mixing (PU K)

Diffusion= heating from Schottky noise (desired mixing (K PU)) + from thermal noise
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Principle of betatron cooling & basic ingredients

Phase advance PU-K ≈ 900

High amplification needed, 
electronic gain ~ 10 7 (140 dB)
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Good cooling for overlapping Schottky bands i.e. M=1 
and low ratio thermal noise/Schottky signal U 

B and M depend in a contradictory way on the spread ∆T/T= - ∆f/f ~ - ηring/pk ∆p/p 
of the beam particles, they vary during momentum cooling

In reality: choose ηring/pk for a compromise between B and M

To cool all the particles within the initial momentum distribution B ≥ 0
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Principle of momentum cooling with notch filter

Fokker-Planck equation
(solved with CERN code) 

The response of the notch filter

provides the cooling force,
induces extra undesired mixing

Coherent term= cooling force x undesired mixing (PU K)
System gain G = PU response x  Filter response x  Electronic gain x K response
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well-separated
Schottky bands M>1
B ≥ 0 for increased
undesired mixing

very small |η|≈1%
i.e. ring almost @ γtr
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Features and developments for the 1-2 GHz system

Beam

Optical notch filter (< 40 dB deep notches within 1-2 GHz )

PU/Kicker tank consists of 2 plates (up+down or left+right) with 64 electrodes/plate
PH/KH=PV/KV rotated by 900

Plunging of PU electrodes i.e. moving closer to beam during cooling
No plunging of KI electrodes

Slotline PU electrodes at 20-30 K
Cryogenic low-noise preamplifiers at 80 K 
(open option of preamplifiers in UHV at 20 K)
Kickers at 300 K

Effective noise temperature
at preamplifier input Teff =73 K
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Longitudinal PU/K impedance, sensitivity, PU plunging
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HFSS simulations, absolute values: 

circuit convention:

)f((y))f(y)f,( c SSZZ kk ⋅⋅≈
Ω=  11.25)f( cpZ at yPU= ±60 mm

Simplify:

yslope1)( ⋅+≈yS

Ω=  75.37)f( cpZ at yPU= ±20 mm

S(f)

Plunging of PU electrodes:
factor 1.8 in sensitivity (3.4 in Zp)
from yPU=±60 mm ±20 mm
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Input parameters & requirements
CR Circumference 
3 GeV antiprotons

221.45   m
β=0.9712, γ=4.197, rev. frequency f0=1.315  MHz

Ring slip factor η, slip factor PU-K  ηpk
Distance PU-K/circumference

-0.011,  -0.033
0.378

Beam intensity
Initial rms momentum spread 
Initial rms emittance εh,v

108

3.5  10-3,  Gaussian/parabolic 
45 π mm mrad

System bandwith 1-2  GHz

Number of PU, K (longitudinal cooling)
Number of PU, K (transverse cooling)

128, 128
64, 64

PU, Kicker impedance  at midband 1.5 GHz

PU/K sensitivity S(y)=1+slope* y
PU/K sensitivity vs. frequency S(f)

no plunging considered, PU electrodes at  ± 60 mm
11.25  Ohm, 45  Ohm
slope= 24.5 m-1

Effective temperature for thermal noise 73 K

ideal, infinitely deep notch filter + 900 phase shifter

Total installed power at kickers 
(limited by funding, can be upgraded)

4.8 kW

Goal: Cool longitudinally from σp/p= 3.5 10-3 4 10-4   in 9 s
Simultaneous transverse cooling from εh,v = 45 ≈ 1 π mm mrad
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Momentum cooling: Cooling force and diffusion
G|| = 150 dB (3.2 107);  t=10 s

t=0, 2.5, 5, 7.5 and 10 s

Coherent term: 
• linear notch filter response around
∆p/p=0 cooling force

• momentum acceptance of system
(undesired mixing ≥ 0) > total initial ∆p/p 

Cooling of all particles

Schottky noise dominates
long. cooling time ~  N

Notch filter cuts thermal noise
around all harmonics
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It deforms the cooling force and suppresses
Schottky noise within the distribution,
cooling loop is stable (Nyquist plot)
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Feedback by the beam included:

Momentum cooling: Feedback by the beam

G|| = 150 dB (3.2 107);  t=10 s
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Optimization:
For a given signal/noise ratio there is
a gain so as to reach the desired
σp/p in the desired time.
Lower gain leads to lower σp/p 
but cooling takes longer.

Momentum cooling: Results

For ultimate σp/p : 
increase signal/noise by plunging
the PU electrodes during cooling

Required installed power = 4 Pmax ( to account for signal fluctuations)
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Betatron cooling rate: details
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Simultaneous notch filter momentum cooling ON
Ansatz from Fokker-Planck results at  dB 150|| =G

Interplay between betatron & momentum cooling
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Beyond power limits...cw Pmax= 950 W ! 

For precise treatment, 
feedback by the beam must be included

dB 141 initial )( =⊥ cmG

Betatron cooling: First results

Reached εh = 4 π mm mrad in 9 s

M dominates the heating
at all t: M~10 U
in principle, need long cooling
at very low gain
(plunging helps only at the end)

Initially:  

, 2.1=U !  11=M
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and grows... 
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Conclusions I

Pbar filter momentum cooling from σp/p= 3.5 10-3 4 10-4 in 9 s
is possible in the 1-2 GHz band:

• with a gain around 150 dB (3.2 107),
• required max. installed power ~ 2.6 kW (cw ~0.7 kW),
• assuming unplunged PU electrodes (conservative case),

plunging expected to help reaching lower σp/p,
• feedback by the beam not negligible but loop stable.

The design η=-0.011 of CR is optimum
for both 1-2 and 2-4 GHz bands (undesired mixing)
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Conclusions II

Preliminary results show that betatron cooling is possible

• with separately optimized simultaneous filter momentum cooling (150 dB,~2.6 kW),

• down to εrms ~ 4 π mm mrad within 9 s,

• with an electronic gain at midband around 140 dB (107),

• with max. required installed power ~ 4 kW (cw ~1 kW) per plane h/v
i.e. beyond the foreseen available power,

• assuming unplunged electrodes.

As expected, betatron cooling suffers from large desired mixing M
(required by filter momentum cooling) dominating the diffusion at all t.

Way out: slow-down momentum cooling in the beginning
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Outlook

Include feedback by the beam into betatron cooling model

Time-optimization of momentum and betatron cooling together, 
distribution of available power accordingly, e.g., 

• Initially, slower filter cooling to help the betatron cooling, 
then inversely to reach ultimate emittances and momentum spread.

• Apply initially time-of-flight and later notch filter momentum cooling, 
with simultaneous betatron cooling.

Include plunging of PU electrodes, expected to  reduce diffusion
by factors 4-9, especially transversally

Additional filter momentum cooling in the 2-4 GHz band, 
study handshake between 2 bands
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