Paper | Title | Other Keywords | Page |
---|---|---|---|
TUPSM016 | LANSCE Wire Scanner AFE: Analysis, Design, and Fabrication | instrumentation, vacuum, coupling, impedance | 141 |
|
|||
The goal of the design LANSCE-R Wire-Scanner Analog Front-end Electronics is to develop a high-performance, dual-axis wire-scanner analog front-end system implemented in a single cRIO module. This new design accommodates macropulse widths as wide as 700 us at a maximum pulse rate of 120 Hz. A lossey integrator is utilized as the integration element to eliminate the requirement for providing gating signals to each wire scanner. The long macropulse and the high repetition rate present conflicting requirements for the design of the integrator. The long macropulse requires a long integration time constant to assure minimum integrator droop for accurate charge integration, and the high repetition rate requires a short time constant to assure adequate integrator reset between macropulses. Also, grounding is a serious concern due to the small signal levels. This paper reviews the basic Wire Scanner AFE system design implemented in the cRIO-module form factor to capture the charge information from the wire sensors and the grounding topology to assure minimum noise contamination of the wire signals. |
|||
TUPSM033 | Rogue Mode Shielding in NSLS-II Multipole Vacuum Chambers | vacuum, multipole, radiation, pick-up | 194 |
|
|||
Modes with transverse electric field (TE-modes) in the NSLS-II multipole vacuum chamber can be generated at frequencies above 450 MHz due to its geometric dimensions. Since the NSLS-II BPM system is triggered by the RF at 500 MHz, frequencies of higher-order modes (HOMs) can be generated within the transmission band of the band pass filter. In order to avoid systematic errors in the NSLS-II BPM system, we introduced frequency shift of HOMs by using RF metal shielding located in the antechamber slot. |
|||
|