A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Tsumaki, K.

Paper Title Page
WEPC056 Emittance Reduction by Longitudinally Varying Dipole Field 2118
 
  • K. Tsumaki
    JASRI/SPring-8, Hyogo-ken
 
  One of the most important matters for synchrotron radiation source is decreasing the beam emittance to increase the brightness. The electron beam emittance is almost determined by electron energy and the average H-function. For further improvement of the emittance, we can change the damping partition number by radially varying dipole field and can reduce the emittance. However, this method is not effective for a small emittance lattice due to its small dispersion function. We have studied the emittance reduction by longitudinally varying magnetic field in a bending magnet. The radius of curvature is assumed to vary with the function of nth degree (n=1,2,3,4). The emittance is calculated numerically for minimum emittance and achromat configuration. In this paper, we describe the details of calculated results and discuss the effectiveness of the method.  
THPC070 Symmetry Restoration of the SPring-8 Storage Ring by Counter-sextupole Magnets 3149
 
  • K. Soutome, S. Daté, T. Fujita, K. Fukami, C. Mitsuda, A. Mochihashi, H. Ohkuma, M. Oishi, S. Sasaki, J. Schimizu, Y. Shimosaki, M. Shoji, M. Takao, K. Tsumaki, H. Yonehara, C. Zhang
    JASRI/SPring-8, Hyogo-ken
  • S. Matsui, H. Takebe, H. Tanaka
    RIKEN/SPring-8, Hyogo
 
  In the SPring-8 storage ring there are four magnet-free long straight sections of about 30m. These were realized in 2000 by locally rearranging quadrupole and sextupole magnets. In modifying the optics we took care of the periodicity of cell structure, especially of sextupole field distribution along the ring. To keep the periodicity high and hence the dynamic aperture large, we adopted a scheme in which "betatron phase matching" and "local chromaticity correction" are combined. In this scheme the dynamic aperture for on-momentum electrons is kept by the phase matching and that for off-momentum electrons is enlarged by the local chromaticity correction with weak sextupoles (SL). After modifying the lattice, we tried to recover the symmetry of the ring further and found that a harmful effect of nonlinear kick due to SL can be minimized by additional "counter-sextupole magnets" placed 180 degrees apart in horizontal betatron phase from SL. We installed such counter-sextupoles in every long straight sections and confirmed that the aperture was improved. In the paper we discuss these topics showing experimental data of injection efficiency, momentum acceptance, etc.