A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Takano, S.

  
Paper Title Page
THOACH03 Top-up Operation at SPring-8 - Towards Maximizing the Potential of a 3rd Generation Light Source 222
 
  • H. Tanaka, T. Aoki, T. Asaka, S. Daté, K. Fukami, Y. Furukawa, H. Hanaki, N. Hosoda, T. Kobayashi, N. Kumagai, M. Masaki, T. Masuda, S. Matsui, A. Mizuno, T. Nakamura, T. Nakatani, T. Noda, T. Ohata, H. Ohkuma, T. Ohshima, M. Oishi, S. Sasaki, J. Schimizu, M. Shoji, K. Soutome, M. Suzuki, S. Suzuki, S. Takano, M. Takao, T. Takashima, H. Takebe, K. Tamura, R. Tanaka, T. Taniuchi, Y. Taniuchi, K. Tsumaki, A. Yamashita, K. Yanagida, H. Yonehara, T. Yorita
    JASRI/SPring-8, Hyogo
  • M. Adachi, K. Kobayashi, M. Yoshioka
    SES, Hyogo-pref.
 
  Top-up operation maximizes research activities in a light source facility by an infinite beam lifetime and photon beam stability. We have been improving the SPring-8 accelerators to achieve the ideal top-up operation. For the perturbation-free injection, we adjusted the magnetic field shape of four bump magnets to close the bump orbit, and introduced a scheme to suppress the stored beam oscillation induced by the nonlinearlity of sextupole magnets. These reduced the horizontal oscillation down to a third of the stored beam size. For the loss-free injection, beam collimators were installed upstream of the injection line. This realized the injection efficiency of ~100% under the restricted gap condition of in-vacuum insertion devices (ID). Since autumn 2003, we have been injecting the beams keeping the photon beam shutters opened and ID gaps closed. We developed a bunch-by-bunch feedback system to reduce the beam loss further with all the ID gaps fully closed by lowering the operating chromaticity. The operation with constant stored current is scheduled in June 2004. We present the overview and progress of the SPring-8 top-up operation focusing on our developments and results.  
Video of talk
Transparencies
TUPKF034 Low Output-Impedance RF System for 2nd Harmonic Cavity in the ISIS Synchrotron 1036
 
  • T. Oki, S. Fukumoto, Y. Irie, M. Muto, S. Takano, I. Yamane
    KEK, Ibaraki
  • R.G. Bendall, I.S.K. Gardner, M.G. Glover, J. Hirst, D. Jenkins, A. Morris, S. Stoneham, J.W.G. Thomason, T. Western
    CCLRC/RAL/ISIS, Chilton, Didcot, Oxon
  • J.C. Dooling, D. Horan, R. Kustom, M.E. Middendorf, G. Pile
    ANL, Argonne, Illinois
 
  In the ISIS facility based at Rutherford Appleton Laboratory (RAL) in the UK, second target station project was funded, which requires to increase the current intensity by 1.5-times (300 micro-A). Four 2nd harmonic RF cavities will be installed in the ISIS synchrotron in order to increase the trapping efficiency, and to mitigate the space charge detuning. A very low output-impedance RF system for the 2nd harmonic cavity has been developed by the collaboration between RAL, Argonne National Laboratory (US) and KEK (Japan). The system comprises the 240 kW triode as a final amplifier with plate-to-grid feedback path. The measured output-impedance was less than 30 ohms over the frequency range of 2.7 - 6.2 MHz, which agreed well with calculations. High power test was also performed under frequency swept mode at 50 Hz repetition. The operation was almost stable, and more than 12 kVpp was obtained as maximum. The voltage gain of the final amplifier was 25 - 30, which decreased gradually with frequency due to decreasing input-impedance of triode. The beam test is planned at ISIS in near future.