A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Scandale, W.

Paper Title Page
MOPLT030 Performance Limits and IR Design of a Possible LHC Luminosity Upgrade Based on Nb-Ti SC Magnet Technology 608
 
  • F. Ruggiero, O.S. Brüning, R. Ostojic, L. Rossi, W. Scandale, T.M. Taylor
    CERN, Geneva
  • A. Devred
    CEA/DSM/DAPNIA, Gif-sur-Yvette
 
  We investigate the maximum LHC performance for a possible IR design based on classical Nb-Ti insertion magnets. We then extend our analysis to a ternary Nb-based ductile alloy such as Nb-Ti-Ta, a less developed but relatively cheap super-conducting material which would allow us to gain about 1 T of peak field on the coils, and discuss the corresponding luminosity reach for a possible LHC upgrade compared to that based on Nb3Sn magnet technology.  
WEPKF016 Instrumental Uncertainty in Measuring the Geometry of the LHC Main Dipoles. 1627
 
  • M. La China, G. Gubello, W. Scandale
    CERN, Geneva
 
  In the Large Hadron Collider 1232 superconducting dipoles will bend the two 7 TeV energy beams along a 27 km-circumference trajectory. The series production (assigned to three European firms) will require a well-defined procedure to check, in every magnet, the respect of the dimensional specifications. To verify the tolerances of few tenths of millimeter over the 15-meter length in each cold mass, a laser tracker is necessarily used. To access the two beam apertures and to increase the measurement accuracies, the laser tracker is placed in different stations around the dipole defining a 'multi-station measuring procedure'. The noise affecting all the data taken so far suggested a careful analysis of the procedure itself. Through the computer modeling (based on a Monte Carlo algorithm), the statistical error was quantified and compared to the experimental error. From this comparison the critical aspects of low accuracy rooted in the multi-station procedure were better understood, allowing the optimization of the procedure itself for the forthcoming series production.  
WEPKF024 The Geometry of the LHC Main Dipole 1648
 
  • E.Y. Wildner, J. Beauquis, G. Gubello, M. La China, W. Scandale
    CERN, Geneva
 
  The 15 m long main dipole of the Large Hadron Collider has a curvature following the beam trajectory with the aim to minimize the necessary coil aperture. To avoid feed-down effects and mechanical aperture restrictions strong constraints have to be imposed on the construction of the magnet in terms of tolerances and stability of the cold mass during transport, cryostating, cold tests and installation in the LHC tunnel. In this paper we show the behaviour of the shape of the magnet using available measurements taken at different stages of construction and assembly. In particular we discuss the evolution of the sagitta and the positioning of the corrector magnets that are used to compensate the multipole field errors. We propose alignment procedures to be used in case magnets are out of tolerance after transport and cold tests. The twist of the magnet and its relation to the field angle will also be discussed.