A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Sasaki, S.

  
Paper Title Page
MOPKF048 Injection Beam Loss at the SPring-8 Storage Ring 417
 
  • M. Takao, T. Ohshima, S. Sasaki, J. Schimizu, K. Soutome, H. Tanaka
    JASRI/SPring-8, Hyogo
 
  Capture efficiency of injection beam is extremely important for top-up operation because open photon shutter permits the bremsstrahlung from lost particles to be transported to experimental floor. Furthermore, since the SPring-8 storage ring has many in-vacuum insertion devices with narrow gap, the demagnetization by the lost electron bombardment is also serious to the beam injection with gap closing. To clarify the loss mechanism of injected beam at the SPring-8 storage ring, we investigate the loss process under various conditions of the storage ring, and especially measure the dependence of injection loss rate on gaps of insertion devices. Comparing the measurements with simulations, we found that an injected particle with a large horizontal amplitude begins to oscillate in vertical direction through error magnetic field and eventually disappears at the vertical limit. It is also found that the low chromaticity of the storage ring is effective for the reduction of injection beam loss. In this paper, we report the loss mechanism of the injection beam of the SPring-8 storage ring and the possible improvements of the capture efficiency.  
THOACH03 Top-up Operation at SPring-8 - Towards Maximizing the Potential of a 3rd Generation Light Source 222
 
  • H. Tanaka, T. Aoki, T. Asaka, S. Daté, K. Fukami, Y. Furukawa, H. Hanaki, N. Hosoda, T. Kobayashi, N. Kumagai, M. Masaki, T. Masuda, S. Matsui, A. Mizuno, T. Nakamura, T. Nakatani, T. Noda, T. Ohata, H. Ohkuma, T. Ohshima, M. Oishi, S. Sasaki, J. Schimizu, M. Shoji, K. Soutome, M. Suzuki, S. Suzuki, S. Takano, M. Takao, T. Takashima, H. Takebe, K. Tamura, R. Tanaka, T. Taniuchi, Y. Taniuchi, K. Tsumaki, A. Yamashita, K. Yanagida, H. Yonehara, T. Yorita
    JASRI/SPring-8, Hyogo
  • M. Adachi, K. Kobayashi, M. Yoshioka
    SES, Hyogo-pref.
 
  Top-up operation maximizes research activities in a light source facility by an infinite beam lifetime and photon beam stability. We have been improving the SPring-8 accelerators to achieve the ideal top-up operation. For the perturbation-free injection, we adjusted the magnetic field shape of four bump magnets to close the bump orbit, and introduced a scheme to suppress the stored beam oscillation induced by the nonlinearlity of sextupole magnets. These reduced the horizontal oscillation down to a third of the stored beam size. For the loss-free injection, beam collimators were installed upstream of the injection line. This realized the injection efficiency of ~100% under the restricted gap condition of in-vacuum insertion devices (ID). Since autumn 2003, we have been injecting the beams keeping the photon beam shutters opened and ID gaps closed. We developed a bunch-by-bunch feedback system to reduce the beam loss further with all the ID gaps fully closed by lowering the operating chromaticity. The operation with constant stored current is scheduled in June 2004. We present the overview and progress of the SPring-8 top-up operation focusing on our developments and results.  
Video of talk
Transparencies