A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Neumann, A.

Paper Title Page
TUPKF008 Status of the HoBiCaT Superconducting Cavity Test Facility at BESSY 970
 
  • J. Knobloch, W. Anders, J. Borninkhof, S. Jung, M. Martin, A. Neumann, D. Pflückhahn, M. Schuster
    BESSY GmbH, Berlin
 
  BESSY has recently constructed the HoBiCaT cryogenic test facility for superconducting TESLA cavity units, including all ancillary devices (helium tank, input coupler, tuner, magnetic shielding). It is designed to house two such units in a configuration similar to that envisaged for the superconducting CW linac of the BESSY FEL. These units are presently being fabricated, prepared and assembled by industry. HoBiCaT will be used to address many of the issues that must be considered prior to finalizing the design of the proposed linac. Rapid turn-around-tests permit the investigation of items such as RF regulation, microphonic detuning and cryogenic parameters/achievable pressure stability. These test will also serve as the first step towards qualifying the industrial production of assembled cavity units. The commissioning of HoBiCaT is scheduled for Spring 2004 and the current status is presented here.  
TUPKF009 RF Control of the Superconducting Linac for the BESSY FEL 973
 
  • J. Knobloch, A. Neumann
    BESSY GmbH, Berlin
 
  In the BESSY-FEL superconducting linac, precise RF control of the cavities' voltage is imperative to maintain a bunch-to-bunch time jitter of less than 50 fs for synchronization in the HGHG section. The average beam loading is less than 1.5 kW/m and the cavity bandwidth is small so that high-gain RF feedback is required. Noise, in particular microphonic detuning, strongly impact the achievable level of control. Presented here are simulations of the cavity-feedback system, taking into account beam loading and noise sources such as measurement noise, microphonics and injection jitter. These simulations are used to estimate the resultant time and energy jitter of the bunches as they enter the HGHG section of the BESSY FEL.