A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Marchand, P.

  
Paper Title Page
MOYCH03 Superconducting RF Cavities for Synchrotron Light Sources 21
 
  • P. Marchand
    SOLEIL, Gif-sur-Yvette
 
  Superconducting (sc) RF systems are already operational or planned in several third generation synchrotron light sources. In these machines, which require relatively low RF accelerating voltage and high beam loading, the advantage of using the sc technology essentially resides in the fact that one can achieve an efficient damping of the cavity Higher Order Modes (HOM) while still maintaining a high fundamental shunt impedance. The strong HOM damping practically is realised following two approaches : a) use of absorber material, located inside the cavity tube cut-off, through which the HOM propagate and then are damped (Cornell/KEK designs); b) two-cell cavity with coaxial HOM dampers located on the tube connecting the two cells (SOLEIL design). Third harmonic idle sc cavities (1.5 GHz) of the SOLEIL type are already operational in the Swiss Light Source and ELETTRA. The main RF system (500 MHz) of these machines consist of normal conducting cavities and the purpose of the third harmonic sc system is to lengthen the bunches in order to improve the beam lifetime and stability (additional Landau damping). Recently, several third generation synchrotron light sources have also planned to use sc cavities as main accelerating RF systems. The operational conditions of the existing systems as well as the status of the planned ones are reported here.  
Video of talk
Transparencies
THPKF028 Upgrade of the Cryomodule Prototype before its Implementation in SOLEIL 2326
 
  • P. Bosland
    CEA/DSM, Gif-sur-Yvette
  • P. Bredy, S. Chel, G. Devanz
    CEA/DSM/DAPNIA, Gif-sur-Yvette
  • R. Losito
    CERN, Geneva
  • P. Marchand, K. Tavakoli, C. Thomas-Madec
    SOLEIL, Gif-sur-Yvette
 
  In the Storage Ring (SR) of the Synchrotron SOLEIL light source, two cryomodules will provide the maximum power of 600 kW required at the nominal energy of 2.75 GeV with the full beam current of 500 mA. A cryomodule prototype, housing two 352 MHz superconducting single-cell cavities with strong damping of the Higher Order Modes has been built and successfully tested in the ESRF storage ring. Even though the achieved performance (3 MV and 380 kW) does meet the SOLEIL requirement for the 1st year of operation, the cryomodule prototype will be upgraded before its installation in the SR early 2005. Modifications will be made on the internal cryogenic system, and also on the power and dipolar HOM couplers. That requires a complete disassembling and reassembling of the cryomodule, which is being carried out at CERN in the framework of collaboration between SOLEIL, CEA and CERN. Additional 3D RF calculations have been performed on the full SOLEIL RF structure in order to get a more detailed description of the dipolar modes damping and of the dipolar HOM couplers tuning. A second cryomodule, similar to the modified prototype, will be built and installed in the SR about one year later.  
THPKF031 High Power (35 KW and 190 KW) 352 MHZ Solid State Amplifiers for Synchrotron SOLEIL 2335
 
  • P. Marchand, R.L. Lopes, J. Polian, F. Ribeiro, T. Ruan
    SOLEIL, Gif-sur-Yvette
 
  In the SOLEIL Storage Ring (SR), two cryomodules, each containing a pair of superconducting cavities will provide the maximum power of 600 kW, required at the nominal energy of 2.75 GeV with the full beam current of 500 mA and all the insertion devices. Each of the four cavities will be powered with a 190 kW solid state amplifier consisting in a combination of 315 W elementary modules (about 750 modules per amplifier). The amplifier modules, based on a technology developed in house, with MOSFET transistor, integrated circulator and individual power supply, will be fabricated in the industry. In the booster, a 40 kW solid state amplifier (147 modules) will power a 5-cell copper cavity of the LEP type. The status and the test results of the different parts of the equipment are reported in this paper.