A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Kobayashi, K.

  
Paper Title Page
TUPKF037 Multi-harmonic RF Acceleration System for a Medical Proton Synchrotron 1045
 
  • K. Saito, M. Katane, K. Kobayashi, K. Masui, K. Moriyama, H. Nishiuchi, H. Sakurabata, H. Satomi
    Hitachi, Ltd., Power & Industrial Systems R&D Laboratory, Ibaraki-ken
 
  We have developed an RF accelerating system for medical proton synchrotron. The RF cavity is a tuning-free wideband type, loaded with FINEMET cores, which is driven by a solid-state RF power amplifier with operation frequency range between 1MHz and 10MHz. Multi-harmonic RF acceleration scheme has been realized with the RF control system, to reduce beam loss by space-charge effect in low energy region. The original techniques for high-speed digital signal processing and high-precision RF signal processing have been applied, in order to fulfill feedback control of the frequency, phase and amplitude of the second and third harmonic RF signals as well as the fundamental one.  
WEPKF039 The Vacuum System of Super SOR 1690
 
  • H. Sakai, M. Fujisawa, A. Kakizaki, T. Kinishita, H. Kudo, N. Nakamura, O. Okuda, S. Shibuya, K. Shinoe, H. Takaki
    ISSP/SRL, Chiba
  • K. Kobayashi
    KEK, Ibaraki
  • T. Koseki
    RIKEN/RARF/BPEL, Saitama
  • H. Ohkuma
    JASRI/SPring-8, Hyogo
  • S. Suzuki
    LNS, Sendai
 
  The Super-SOR light source is a Japanese VUV and soft X-ray third-generation synchrotron radiation source, which consists of 1.8GeV storage ring and injector. The beam current is circulated up to 400mA. These accelerators are designed so as to fully meet requirements for top-up injection. In order to realize these operation modes, our vacuum system are required on following conditions. One is to obtain the long lifetime. The other is not to melt the vacuum chamber by irradiating the high flux synchrotron radiation. Finally beam instability is not occurred by large wake fields. We describe the design of the vaccum chamber of Super-SOR and present the recent R&D concerning this system.  
THOACH03 Top-up Operation at SPring-8 - Towards Maximizing the Potential of a 3rd Generation Light Source 222
 
  • H. Tanaka, T. Aoki, T. Asaka, S. Daté, K. Fukami, Y. Furukawa, H. Hanaki, N. Hosoda, T. Kobayashi, N. Kumagai, M. Masaki, T. Masuda, S. Matsui, A. Mizuno, T. Nakamura, T. Nakatani, T. Noda, T. Ohata, H. Ohkuma, T. Ohshima, M. Oishi, S. Sasaki, J. Schimizu, M. Shoji, K. Soutome, M. Suzuki, S. Suzuki, S. Takano, M. Takao, T. Takashima, H. Takebe, K. Tamura, R. Tanaka, T. Taniuchi, Y. Taniuchi, K. Tsumaki, A. Yamashita, K. Yanagida, H. Yonehara, T. Yorita
    JASRI/SPring-8, Hyogo
  • M. Adachi, K. Kobayashi, M. Yoshioka
    SES, Hyogo-pref.
 
  Top-up operation maximizes research activities in a light source facility by an infinite beam lifetime and photon beam stability. We have been improving the SPring-8 accelerators to achieve the ideal top-up operation. For the perturbation-free injection, we adjusted the magnetic field shape of four bump magnets to close the bump orbit, and introduced a scheme to suppress the stored beam oscillation induced by the nonlinearlity of sextupole magnets. These reduced the horizontal oscillation down to a third of the stored beam size. For the loss-free injection, beam collimators were installed upstream of the injection line. This realized the injection efficiency of ~100% under the restricted gap condition of in-vacuum insertion devices (ID). Since autumn 2003, we have been injecting the beams keeping the photon beam shutters opened and ID gaps closed. We developed a bunch-by-bunch feedback system to reduce the beam loss further with all the ID gaps fully closed by lowering the operating chromaticity. The operation with constant stored current is scheduled in June 2004. We present the overview and progress of the SPring-8 top-up operation focusing on our developments and results.  
Video of talk
Transparencies
THPLT068 Transverse Bunch-by-bunch Feedback System for the SPring-8 Storage Ring 2646
 
  • T. Nakamura, S. Daté, T. Ohshima
    JASRI/SPring-8, Hyogo
  • K. Kobayashi
    SES, Hyogo-pref.
 
  A transverse bunch-by-bunch feedback system is developed for the SPring-8 storage ring. An analog de-multiplexer is developed to slice out every six-bunch signal for high-resolution 12-bit ADCs of clock frequency 85MHz, one-sixth of 508MHz RF frequency. Six commercial ADC-FPGA-DAC boards are used for processing the signal from the de-multiplexer. A custom FPGA board is used to multiplex the output signals from those boards. The feedback system is installed in the ring and working with the damping time of 0.5~2.5ms in 30kHz-254MHz and can suppress multi-bunch instabilities driven by impedances of resistive-wall of in-vacuum insertion devices and cavity HOMs at low chromaticity operation.