A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hirano, K.

Paper Title Page
THPKF039 Study of Photo-cathode RF Gun for a High Brightness Electron Beam 2359
 
  • Y. Yamazaki
    JNC/OEC, Ibaraki-ken
  • S. Araki, H. Hayano, M. Kuriki, T. Muto, N. Terunuma, J. Urakawa
    KEK, Ibaraki
  • M.K. Fukuda, K. Hirano, M. Nomura, M. Takano
    NIRS, Chiba-shi
 
  We are going to develop a compact high-brightness electron beam system to adopt industrial and medical applications. A multi-bunch photo-cathode RF gun has been developed to generate 100 bunches beam with 2.8ns spacing and 5nC charge per bunch. We will report details of the development, especially photo-cathode production and emission characteristics from cathode by the laser.  
THPLT061 Development of a Multibunch Photo-cathode RF Gun System 2625
 
  • J. Urakawa, M. Akemoto, S. Araki, H. Hayano, M. Kuriki, T. Muto, N. Terunuma, Y. Yamazaki
    KEK, Ibaraki
  • M.K. Fukuda, K. Hirano, M. Nomura, M. Takano
    NIRS, Chiba-shi
 
  A multibunch photo-cathode RF gun system has been developed as a electron source for the production of quasi-monoenergetic X-rays based on inverse Compton scattering. This system consists of a photocathode rf gun, a cathode system, a laser system, beam diagnostic sections, and beam dump line. The gun produces 100 bunches with a 2.8ns bunch spacing and 5nC bunch charge. We will report on the RF gun system with 4 bending dipoles of a chicane which makes the laser injection to the cathode with perpendicular angle possible.  
THPLT064 Enhancement of Laser Power from a Mode Lock Laser with an Optical Cavity 2634
 
  • M. Nomura, K. Hirano, M. Takano
    NIRS, Chiba-shi
  • S. Araki, Y. Higashi, T. Taniguchi, J. Urakawa, Y. Yamazaki
    KEK, Ibaraki
  • Y. Honda, N. Sasao, K. Takezawa
    Kyoto University, Kyoto
  • H. Sakai
    ISSP/SRL, Chiba
 
  We have developed a laser-wire beam monitor to measure a beam profile in the KEK/ATF damping ring. This monitor is based on the inverse Compton scattering with a thin wire of the laser. The laser-wire is produced with a Fabry-Perot optical cavity in which laser power from a CW laser is stored and enhanced up to 1000 times. We have a plan to increase a gamma ray flux by using a pulsed laser instead of the CW laser. There are many applications for such a high flux gamma ray, e.g. medical use, transmutation and so on. We have done a test experiment of laser pulse stacking with a mode lock laser where wavelength is 1064 nm, repetition rate 357MHz, pulse width 7psec(FWHM) and a 42 cm long Fabry-Perot optical cavity. The experimental results show that laser power in the optical cavity can be enhanced by laser pulse stacking.