A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Hauviller, C.

Paper Title Page
WEPLT020 Installation of A Particle Accelerator: from Theory to Practice. The LHC Example 1864
 
  • C. Hauviller, S. Weisz
    CERN, Geneva
 
  Installing and commissioning the thousands of equipments constituting a Particle Accelerator is a lengthy and complex process. A large number of multidisciplinary teams are involved over a long period lasting usually many years. Diverse boundary constrains must be taken into account: space, a long and narrow tunnel with few accesses, time, with milestones set many years in advance, and obviously budget. A strict organisation associated with the management tools and the right people is the only way to arrive to a success. The keywords are: Knowledge: A unique and up-to-date database of all the elements and their location, Integration: Study the physical position of the elements, suppress the interferences and define the installation methodology, Prevision: Schedule all the activities and update on-line, In-situ management and supervision: Teams dedicated to follow-up, corrective actions and orphan jobs, Safety. After presenting the planned overall organization, the paper will present practical achievements with the example of the LHC machine installation.  
WEPLT022 Transport and Installation of Cryo-magnets in CERN's Large Hadron Collider Tunnel 1870
 
  • K. Kershaw, K. Artoos, O. Capatina, A.Y. Coin, M. Gielen, C. Hauviller
    CERN, Geneva
 
  The arcs of the Large Hadron Collider (LHC) will contain around 1700 main superconducting dipoles and quadrupoles. The long and heavy magnets are supported on fragile composite support posts inside a cryostat to reduce the heat in-leak to the magnets' super fluid helium bath. The presence of fragile components and the need to avoid geometry changes make the cryo-magnets very difficult to handle and transport. The transport and installation of the LHC cryo-magnets in the LEP tunnels originally designed for smaller, lighter LEP magnets has required development of completely new handling solutions. The paper explains the constraints imposed by the cryo-magnet characteristics, the existing tunnel infrastructure and schedule considerations. The development and realisation of transport and handling solutions are described, starting from conceptual design, through manufacture and testing to the installation of the first cryo-magnet. Integration studies to verify and reserve space needed for manoeuvre and the preparation of the infrastructure for transport and installation operations are also presented. The paper includes conclusions and some of the lessons learned.