A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Geschonke, G.

  
Paper Title Page
MOOCH02 First Full Beam Loading Operation with the CTF3 Linac 39
 
  • R. Corsini, H.-H. Braun, G. Carron, O. Forstner, G. Geschonke, E. Jensen, L. Rinolfi, D. Schulte, F. Tecker, L. Thorndahl
    CERN, Geneva
  • M. Bernard, G. Bienvenu, T. Garvey, R. Roux
    LAL, Orsay
  • A. Ferrari
    Uppsala University, Uppsala
  • L. Groening
    GSI, Darmstadt
  • R.F. Koontz, R.H. Miller, R.D. Ruth, A.D. Yeremian
    SLAC, Menlo Park, California
  • T. Lefevre
    NU, Evanston
 
  The aim of the CLIC Study is to investigate the feasibility of a high luminosity, multi-TeV linear e+e- collider. CLIC is based on a two-beam method, in which a high current drive beam is decelerated to produce 30 GHz RF power needed for high-gradient acceleration of the main beam running parallel to it. To demonstrate the outstanding feasibility issues of the scheme a new CLIC Test Facility, CTF3, is being constructed at CERN by an international collaboration. In its final configuration CTF3 will consist of a 150 MeV drive beam linac followed by a 42 m long delay loop and an 84 m combiner ring. The installation will include a 30 GHz high power test stand, a representative CLIC module and a test decelerator. The first part of the linac was installed and commissioned with beam in 2003. The first issue addressed was the generation and acceleration of a high-current drive beam in the "full beam loading" condition where RF power is converted into beam power with an efficiency of more than 90%. The full beam loading operation was successfully demonstrated with the nominal beam current of 3.5 A. A variety of beam measurements have been performed, showing good agreement with expectations.  
Video of talk
Transparencies
MOPLT058 Status of CTF3 Stretcher-compressor and Transfer Line 686
 
  • A. Ghigo, D. Alesini, C. Biscari, A. Clozza, A. Drago, A. Gallo, F. Marcellini, C. Milardi, B. Preger, M.A. Preger, C. Sanelli, M. Serio, F. Sgamma, A. Stecchi, A. Stella, M. Zobov
    INFN/LNF, Frascati (Roma)
  • R. Corsini, G. Geschonke
    CERN, Geneva
 
  The first part of the CTF3 transfer line is under installation. It includes a chicane which, because of its very flexible lattice and large aperture vacuum chamber, can change the bunch length in a wide range. The chicane can be used as a stretcher to lengthen the pulses coming from the linac in order to reduce the coherent synchrotron radiation (CSR) in the recombination rings. A possible use as a bunch compressor is also foreseen in order to make CSR experiments and to characterize beam instrumentation. This paper describes the final design of the vacuum chambers, including beam diagnostics components, and their laboratory tests. The installation status of the magnetic and vacuum chamber components together with the ancillary systems is reported.