A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Emma, P.

  
Paper Title Page
MOPKF080 Controlling Emittance Growth in an FEL Beam Conditioner 503
 
  • P. Emma, G.V. Stupakov
    SLAC, Menlo Park, California
 
  It has been proposed [*] to 'condition' an electron beam prior to the undulator of a Free-Electron Laser (FEL) by increasing each particle's energy in proportion to the square of its transverse betatron amplitude. This conditioning enhances FEL gain by reducing the axial velocity spread within the electron bunch. Previosly [**] we presented a system that allows conditioning of the beam on a relatively short distance, however, it suffers from projected beam emittance growth to the extent that makes it impractical for application for X-ray FELs. In this paper we extend analysis proposed by A. Wolski for general requirements to the conditioner which does not have such emittance growth. We also present a possible implementation of a beam conditioner consisting of multiple solenoid cells in combination with quadrupole magnets. Simulations show that in such a system the emittance growth can be suppressed to acceptable level, albeit in a longer system.

* A. Sessler et al., Phys. Rev. Lett., 68, 309 (1992).** P. Emma and G. Stupakov. PRSTAB, 6, 030701 (2003).

 
MOPKF081 Peak Current Optimization for LCLS Bunch Compressor 2 506
 
  • A.C. Kabel, P. Emma
    SLAC, Menlo Park, California
 
  The performance of an FEL will be a function of both the driving bunch's current and its slice emittance. We have studied a set of parameters for the bunch compression section of the LCLS, simulating the effects of Coherent Synchrotron Radiation (CSR) on the slice emittance of the bunch core as a function of peak current. We use the code TraFiC4 for a three-dimensional, self-consistent simulation on parallel computers. While higher currents will increase FEL performance, its detrimental effects, due to CSR, on slice emittance will counteract this beneficial effect. From our simulations, we determine a near-optimum current, balancing these effects.  
MOPKF083 Inverse Free Electron Laser Heater for the LCLS 512
 
  • R. Carr, L.D. Bentson, P. Bolton, D. Dowell, P. Emma, A. Gilevich, Z. Huang, J.J. Welch, J. Wu
    SLAC, Menlo Park, California
 
  The LCLS Free Electron Laser employs an RF photocathode gun that yields a 1 nC charge bunch a few picoseconds long, which must be further compressed to yield the high current required for SASE gain. The very cold electron beam from the RF photocathode gun is quite sensitive to microbunching instabilities such as coherent synchrotron radiation (CSR) in the compressor chicanes and longitudinal space charge (LSC) in the linac. These effects can be Landau damped by adding energy spread to the electron bunch prior to compression. We propose to do this by interacting an infrared laser beam with the electron bunch in an undulator added to the LCLS gun-to-linac injector. The undulator is placed in a 4-bend chicane to allow the IR laser beam to propagate co-linearly with the e-beam while it oscillates in the undulator. The IR laser beam is derived from the photocathode gun laser. Simulations presented elsewhere in these proceedings show that the laser interaction damps the microbunching instabilities to a very great extent. This paper is a description of the implementation of the laser heater  
MOPKF085 Design Optimizations of X-ray FEL Facility at MIT 518
 
  • D. Wang, M. Farkhondeh, W. Graves, J. Van der Laan, F. Wang, T. Zwart
    MIT/BLAC, Middleton, Massachusetts
  • P. Emma
    SLAC, Menlo Park, California
 
  MIT is exploring the construction of a linac-based x-ray laser user facility on the campus of the Bates Linear Accelerator Center. The facility under consideration would span the wavelength range from 100 to 0.3 nm in the fundamental, move into the hard X-ray region in the third harmonic, and preserve the possibility of an upgrade to even shorter wavelengths. The accelerator configuration would include a high brightness electron gun, a superconducting electron linac and multiple undulators and beam lines to support a growing user community. This paper will present the recent progress on the start-to-end simulations including the parameter optimizations and sensativity analysis.  
MOPKF042 Status of the SPARC Project 399
 
  • M. Ferrario, D. Alesini, M. Bellaveglia, S. Bertolucci, M.E. Biagini, R. Boni, M. Boscolo, M. Castellano, A. Clozza, G. Di Pirro, A. Drago, A. Esposito, D. Filippetto, V. Fusco, A. Gallo, A. Ghigo, S. Guiducci, M. Incurvati, C. Ligi, F. Marcellini, L. Pellegrino, M.A. Preger, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, A. Stecchi, A. Stella, F. Tazzioli, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • F. Alessandria, A. Bacci, M. Mauri
    INFN/LASA, Segrate (MI)
  • I. Boscolo, F. Brogli, S. Cialdi, C. De Martinis, D. Giove, C. Maroli, V. Petrillo, M. Romé, L. Serafini
    INFN-Milano, Milano
  • L. Catani, E.C. Chiadroni, A. Cianchi, S. Tazzari
    Università di Roma II Tor Vergata, Roma
  • F. Ciocci, G. Dattoli, A. Doria, F. Flora, G.P. Gallerano, L. Giannessi, E. Giovenale, G. Messina, L. Mezi, P.L. Ottaviani, L. Picardi, M. Quattromini, A. Renieri, C. Ronsivalle
    ENEA C.R. Frascati, Frascati (Roma)
  • D. Dowell, P. Emma, C. Limborg-Deprey, D. Palmer
    SLAC, Menlo Park, California
  • D. Levi, M. Mattioli, G. Medici
    Università di Roma I La Sapienza, Roma
  • M.  Migliorati, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma
  • P. Musumeci, J. Rosenzweig
    UCLA, Los Angeles, California
  • M. Nisoli, S. Stagira, S. de Silvestri
    Politecnico/Milano, Milano
 
  The aim of the SPARC project is to promote an R&D activity oriented to the development of a high brightness photoinjector to drive SASE-FEL experiments at 500 nm and higher harmonics generation. It has been proposed by a collaboration among ENEA-INFN-CNR-Universita‘ di Roma Tor Vergata-INFM-ST and funded by the Italian Government with a 3 year time schedule. The machine will be installed at LNF, inside an existing underground bunker. It is comprised of an rf gun driven by a Ti:Sa laser to produce 10-ps flat top pulses on the photocathode, injecting into three SLAC accelerating sections. We foresee conducting investigations on the emittance correction and on the rf compression techniques up to kA level. The SPARC photoinjector can be used also to investigate beam physics issues like surface-roughness-induced wake fields, bunch-length measurements in the sub-ps range, emittance degradation in magnetic compressors due to CSR. We present in this paper the status of the design activities of the injector and of the undulator. The first test on diagnostic prototypes and the first experimental achievements of the flat top laser pulse production are also discussed.  
TUPLT162 Computation of the Longitudinal Space Charge Effect in Photoinjectors 1506
 
  • C. Limborg-Deprey, P. Emma, Z. Huang, J.J. Welch, J. Wu
    SLAC, Menlo Park, California
 
  The LCLS Photoinjector produces a 100A, 10 ps long electron bunch which is later compressed down to 100 fs to produce the peak current required for producing SASE radiation. SASE saturation will be reached in the LCLS only if the emittance and uncorrelated energy spread remain respectively below 1.2 mm.mrad and 5. 10-4. This high beam quality will not be met if the Longitudinal Space Charge (LSC) instability develops in the injector and gets amplified in the compressors. The Longitudinal Space Charge instability originates in the injector beamline, from an initial modulation of the current density. Numerical computations, performed with Multiparticle Space Charge tracking codes, showing the evolution of the longitudinal phase space along the LCLS Photoinjector beamline, are presented. Those results are compared with an analytical model for various regimes of energy and acceleration. This study justifies the necessity to insert a "laser heater" in the LCLS Photoinjector beamline to warm up the beam and thus prevent the amplification of the LSC instability in the compressors. Numerical calculations of the 'laser heater' performances are presented.  
WEPLT156 Suppression of Microbunching Instability in the Linac Coherent Light Source 2203
 
  • Z. Huang, P. Emma, C. Limborg-Deprey, G.V. Stupakov, J.J. Welch, J. Wu
    SLAC, Menlo Park, California
  • M. Borland
    ANL/APS, Argonne, Illinois
 
  A microbunching instability driven by longitudinal space charge, coherent synchrotron radiation and linac wakefields is studied for the linac coherent light source (LCLS) accelerator system. Since the uncorrelated (local) energy spread of electron beams generated from a photocathode rf gun is very small, the microbunching gain may be large enough to significantly amplify shot noise fluctuations of the electron beam. The uncorrelated energy spread can be increased by an order of magnitude without degrading the free-electron laser performance to provide strong Landau damping against the instability. We study different damping options in the LCLS and discuss an effective laser heater to minimize the impacts of the instability on the quality of the electron beam.  
THYCH01 Issues and Challenges for Short Pulse Radiation Production 225
 
  • P. Emma
    SLAC/ARDA, Menlo Park, California
 
  A new generation of light sources are being planned at many locations, pushing the frontiers of brightness, wavelength, and peak power well beyond existing 3rd generation sources. In addition to these large scale improvements there is great interest in extremely short duration pulses into the femtosecond and sub-femtosecond regime. Collective electron bunch instabilities at these scales are severe, especially in consideration of the high-brightness electron bunch requirements. Several new schemes propose very short radiation pulses generated with moderate electron bunch lengths. Such schemes include radiation pulse compression, differential bunch spoiling, staged high-gain harmonic generation, and selective pulse seeding schemes. We will describe a few of these ideas and address some of the electron bunch length limitations, highlighting recent measurements at the Sub-Picosecond Pulse Source (SPPS) at SLAC where <100-fs electron and x-ray pulses are now available.  
Video of talk
Transparencies