Issues and Challenges for Short Pulse Radiation Production

Paul Emma Stanford Linear Accelerator Center July 8, 2004

How Short?

...defined by New York Traffic Commissioner T.T. Wiley in 1950 as:

"...the time between the light turning green and the guy behind you honking."

-W. Safire, NY Times, March 7, 2004

Several FEL proposals go beyond even this:

- sub-femtosecond pulses
- 📕 1-Å radiation
- GW power levels
- unprecedented brightness

why so short...

E. Muybridge

E. Muybridge at L. Stanford in 1878

disagree whether all feet leave the ground during gallop...

used spark photography to freeze this 'ultra-fast' process

E. Muybridge, Animals in Motion, ed. L. S. Brown (Dover Pub. Co., New York 1957).

Coulomb Explosion of Lysozyme (50 fs) Single Molecule Imaging with Intense X-rays

Atomic and molecular dynamics occur at the *fsec*-scale

J. Hajdu, Uppsala U.

- 1 <u>femto-second (fs) = 10^{-15} sec $\Rightarrow 0.3 \mu$ m</u>
- 1 <u>atto</u>-second (as) = 10^{-18} sec $\Rightarrow 0.3$ nm

In Neils Bohr's 1913 model of the Hydrogen atom it takes about **150 as** for an electron to orbit the proton.

- Nature, 2004

Electron bunch limitations

Photon pulse limitations

Schemes for short pulse generation

SPPS results (Sub-psec Pulse Source)

Just a tick: Scientists are using ever-shorter time scales to investigate chemical reactions. *Nature, February 26, 2004*

Electron bunch length is limited by...

Coherent synch. rad. (CSR) in compressors
Longitudinal wakefields in linac & undulator
Space-charge forces in accelerator
System jitter (RF, charge, etc)

Try to compress σ_z in LCLS to 1 μ m...

- **CSR**: $\varepsilon/\varepsilon_0 = 1$
- **CSR**: *ε*/*ε*₀ ≈ 14 −

brightness destroyed

Resistive-Wall Wakefields in Undulator

Micro-Bunching Instabilities

FEL 'instability' needs very "cold" e⁻ beam (small E_{x,y} & E-spread)
Cold beam is subject to "undesirable" instabilities in accelerator (CSR, Longitudinal Space-Charge, wakefields)

3 keV, accelerated to 14 GeV, & compressed $\times 36 \Rightarrow 1 \times 10^{-5}$

Too small to be useful in FEL (no effect on FEL gain when <10-4)

Laser-e⁻ interaction ⇒ 800-nm *E*-modulation (40 keV rms)
Heater in weak chicane for time-coordinate smearing
Energy spread in next compressors smears µ-bunching

Huang: WEPLT156, Limborg: TUPLT162, Carr: MOPKF083

In LCLS tracking, final energy spread blows up without 'Laser-Heater'

Final longitudinal phase space at 14 GeV for initial 15- μ m, 1% modulation at 135 MeV

Z. Huang et al., SLAC-PUB-10334, 2004 ...accepted in *PR ST AB*, June 2004

Electron bunch limitations

Photon pulse limitations

Schemes for short pulse generation

SPPS results (Sub-psec Pulse Source)

Just a tick: Scientists are using ever-shorter time scales to investigate chemical reactions. *Nature, February 26, 2004*

FEL pulse duration limited by intrinsic bandwidth

$$\sigma_t \sigma_\omega \geq 1/2$$

For X-ray FEL: $\lambda_r \approx 1 \text{ Å},$ $\sigma_{\omega} / \omega_0 \approx 0.04\%,$ $\sigma_t \geq 100 \text{ as}$

For shorter pulses:

- **shorter wavelength**, λ_r
- $\blacksquare \text{ larger } \rho \text{ (smaller } \varepsilon_{x,y})$
- **Iow-gain (large** $\Delta \omega$)
- seeded start-up

FEL-type:	N _u	L _u	Δωω
Saturated SASE	~1/p	~20 <i>L</i> g	~~
Seeded High-Gain	<1/p	<20 <i>L</i> g	>p
Seeded Low-Gain	~1/(4 <i>πp</i>)	~2 <i>L</i> g	$\sim 4\pi\rho$

Electron bunch limitations

Photon pulse limitations

Schemes for short pulse generation

SPPS results (Sub-psec Pulse Source)

Just a tick: Scientists are using ever-shorter time scales to investigate chemical reactions. *Nature, February 26, 2004*

Statistical Single-Spike Selection Un-seeded single-bunch HGHG (8 \rightarrow 4 \rightarrow 2 \rightarrow 1 Å)

No design changes to FEL – only foil added in chicane

Electron bunch limitations

Photon pulse limitations

Schemes for short pulse generation

SPPS results (Sub-psec Pulse Source)

Just a tick: Scientists are using ever-shorter time scales to investigate chemical reactions. *Nature, February 26, 2004*

Case Sub-Picosecond Pulse Source	Source comparisons					
	Peak brightness**	Pulse length (fsec)	Average flux (photon/sec)	Photons per pulse per 0.1% BW	Rep. Rate (Hz)	
Table top laser plasma	1×10 ⁹	500	1×10 ⁶	100	1×10 ⁴	
ALS* (streak camera)	5×10 ¹⁷	4×10 ⁴	2×10 ⁸	2×10 ⁴	1×10 ⁴	
ALS slicing (undulator)	1×10 ¹⁷ (6×10 ¹⁹)	100	1×10 ⁵ (3×10 ⁴)	10 (300)	1×10 ⁴	
ESRF	1×10 ²⁴	8×10 ⁴	3×10 ¹⁰	3×10 ⁷	900	
SPPS	1×10 ²⁵	80	2×10 ⁷	2×10 ⁶	10	

J. Hastings, SLAC

* streak camera resolution 1 psec, $\Delta Q_e 0.01$ ** photons/sec/mm²/mrad²/0.1%-BW

Unclulator, View upstream Dave Fritz, Soo Lee, David Reis

Sub-Picosecond Pulse Source

Undulator parameters: $L_{\mu} \approx 2.5 \text{ m}, \lambda_{\mu} = 8.5 \text{ cm}, K \approx 4.3, B \approx 0.55 \text{ T}, N_{p} \approx 30$

R&D at SPPS Towards X-Ray FELs

- Measure wakefields of micro-bunch
- Develop bunch length diagnostics
- Study RF phase stability of linac
- Measure emittance growth in chicane (CSR)
- X-ray optics and transport

Michelson Interferometer for CTR Bunch Length Measurement

Bend-Plane Emittance: Chicane ON and OFF

Bend-plane emittance is consistent with calculations and sets upper limit on CSR effect

P. Emma et al., PAC'03

Concluding Remarks

- Very <u>short</u> x-ray pulses are key to exploring ultrafast science at future light sources
- Linac-based FEL's offer high power, very high brightness, and possibly <u>sub-femtosecond</u> pulses at ~1-Å wavelengths

Advances in ultra-short, high-power table-top lasers will greatly influence future LS designs, as will e^- gun development ($\gamma \epsilon_{x,y} < 1 \mu m$)

Thanks to the <u>many</u> who contributed to this presentation...

Z. Huang, W. Fawley, and A. Zholents