A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Deibele, C.

Paper Title Page
TUPLT167 Installation of the Spallation Neutron Source (SNS) Warm Linac 1521
 
  • P.E. Gibson, C. Deibele, J.J. Error, G.A.J. Johnson, P. Ladd
    ORNL/SNS, Oak Ridge, Tennessee
  • N.K. Bultman
    LANL, Los Alamos, New Mexico
 
  The Spallation Neutron Source (SNS) is an accelerator-based neutron source being built at Oak Ridge National Laboratory. The SNS project design and construction is a partnership involving six DOE national laboratories including Argonne, Brookhaven, Jefferson, Lawrence Berkeley, Oak Ridge, and Los Alamos. When completed in 2006, the SNS will provide the most intense, pulsed neutron beams in the world for scientific research and industrial development. At the present time we are installing and commissioning the warm linac system, designed by Los Alamos, and have to date had good success. The warm linac is comprised of six Drift Tube Linac (DTL) tanks and four Coupled Cavity Linac (CCL) modules. These accept an incoming negative hydrogen ion beam from the Front End injector at 2.5 MeV, and accelerate to a final energy of 185 MeV. At this time we have installed and commissioned DTL tanks 1-3 and installed CCL module 1 . Experience and information gained during installation will be presented. The performance in terms of alignment, vacuum and field tuning will be described.  
THPLT167 SNS Laser Profile Monitor Progress 2849
 
  • W. Blokland, A.V. Aleksandrov, S. Assadi, C. Deibele, W. Grice, S. Henderson, T. Hunter, P. Ladd, G.R. Murdoch, J. Pogge, K. Potter, T.J. Shea, D. Stout
    ORNL/SNS, Oak Ridge, Tennessee
  • V. Alexandrov
    BINP SB RAS, Protvino, Moscow Region
 
  SNS will use a Nd:YAG laser to measure transverse profiles in the 186-1000 MeV super-conducting LINAC (SCL) and Ti:Sapphire modelock laser to measure longitudinal profiles in the 2.5 MeV Medium Energy Beam Transport (MEBT). The laser beam is scanned across the H- beam to photo-neutralize narrow slices. The liberated electrons are collected to provide a direct measurement of the transverse or longitudinal beam profile. We have successfully measured the transverse profile with a prototype system on the MEBT beam. The final SCL system uses an optical transport line that is installed alongside the 300 meter super-conducting LINAC to deliver laser light at 8 locations. Possible vibrations in the optical transport system can lead to inaccuracies in the profile measurement. We will use an active feedback system on a mirror to correct any vibration up to 2 KHz. In this paper we describe our vibration studies and vibration cancellation system as well as the progress in the design, installation and testing of various subsystems for both the transverse and the longitudinal profiles.