A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Chanel, M.

Paper Title Page
TUPLT011 The LHC Lead Ion Injector Chain 1153
 
  • K. Schindl, A. Beuret, A. Blas, J. Borburgh, H. Burkhardt, C. Carli, M. Chanel, T. Fowler, M. Gourber-Pace, S. Hancock, C.E. Hill, M. Hourican, J.M. Jowett, K. Kahle, D. Kuchler, A.M. Lombardi, E. Mahner, D. Manglunki, M. Martini, S. Maury, F. Pedersen, U. Raich, C. Rossi, J.-P. Royer, R. Scrivens, L. Sermeus, E.N. Shaposhnikova, G. Tranquille, M. Vretenar, T. Zickler
    CERN, Geneva
 
  A sizeable part of the LHC physics programme foresees heavy ion (lead-lead) collisions with a design luminosity of 1027 cm-2 s-1. This will be achieved after an upgrade of the ion injector chain comprising Linac3, LEIR, PS and SPS machines. Each LHC ring will be filled in ~10 minutes with ~600 bunches, each of 7 107 Pb ions. Central to the scheme is the Low Energy Ion Ring (LEIR), which transforms long pulses from Linac3 to high-brilliance bunches by means of 6D multi-turn injection and accumulation via electron cooling. Major limitations along the chain, including space charge, intra-beam scattering, vacuum issues, and emittance preservation are highlighted. The conversion from LEAR (Low Energy Antiproton Ring) to LEIR includes new magnets and power converters, high-current electron cooling, broad-band RF cavities, upgraded beam diagnostics, and UHV vacuum equipment relying on beam scrubbing to achieve a few 10-12 mbar. Major hardware changes in Linac3 (Electron Cyclotron Resonance source, repetition rate, energy ramping cavity), PS (new injection hardware, elaborate RF gymnastics, stripping insertion), and SPS (100 MHz system) are described. An early beam scenario, using fewer bunches but the same bunch intensity to deliver a lower luminosity, reduces the work required for LHC ion operation in spring 2008.  
WEPLT038 Betatron Resonance Studies at the CERN PS Booster by Harmonic Analysis of Turn-by-turn Beam Position Data 1912
 
  • P. Urschütz, M. Benedikt, C. Carli, M. Chanel, F. Schmidt
    CERN, Geneva
 
  High brightness and high intensity beams are required from the PS Booster for LHC, CNGS and ISOLDE operation. The large space charge tune spreads associated with these beams, especially at injection, require an optimized resonance compensation scheme to avoid beam blow-up and subsequent beam losses. For this a detailed knowledge on strength and phase of resonance driving terms is needed. A new measurement system has been installed to determine resonance driving terms from turn-by-turn bpm data using fast Fourier transform. The multi-turn acquisition system as well as the specific measurement conditions at the PS Booster are discussed. As an example, the measurement and compensation of the linear coupling resonance driving term is presented. Excellent agreement between measurement and simulation for resonance phase and strength was found.