A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Brussaard, G.J.H.

  
Paper Title Page
MOPLT073 Picosecond High Voltage Switching for Pulsed DC Acceleration 722
 
  • J. Hendriks, G.J.H. Brussaard
    TUE, Eindhoven
 
  Laser wakefield acceleration promises the production of high energy electrons from table-top accelerators. External injection of a (low energy) electron bunch into a laser wakefield requires acceleration gradients of the order GV/m. In principle DC acceleration can achieve GV/m acceleration gradients. If high voltage pulses of the order MV can be switched with picosecond precision, the performance of such an accelerator would be greatly enhanced and even multistage DC acceleration would become feasible. Presently risetime and jitter of high voltage pulses in high voltage laser triggered spark gaps are limited to the nanosecond regime by the initial stochastic breakdown process in the gap. A way to overcome this limitation is to create a line focus between the electrodes with an intensity above 1018 W/m2 using a high power femtosecond Ti:Sapphire laser. Because of the instantaneous ionization and high degree of ionization in the plasma channel, picosecond switching precision can be achieved and jitter is reduced significantly. A spark gap test setup with 3 mm interelectrode distance has been build and the first measurements have been done. Femtosecond diagnostics for characterization of the laser induced plasma and electro-optic diagnostics for the high voltage pulse have been developed.  
TUZACH02 Ultra-high Gradient Compact Accelerator Developments 74
 
  • G.J.H. Brussaard, M.J. Van der Wiel
    TUE, Eindhoven
 
  Continued development of relatively compact, although not quite 'table-top', lasers with peak powers in the range up to 100 TW has enabled laser-plasma-based acceleration experiments with amazing gradients of up to 1 TV/m. In order to usefully apply such gradients to 'controlled' acceleration, various hurdles need to be overcome. The main one is that of well-synchronized injection into a sub-mm to micron wavelength plasma wave. The talk will describe the various physics regimes of laser wakefield acceleration, and the two classes of experiments being pursued. One is that of atmospheric-density plasmas, non-linear wakefields with extreme gradients (hundreds of GV/m)and 'internal injection' of few-femtosecond electron bunches. A second class involves modest-density plasmas,wakefields of order 1 GV/m and external injection of (sub)-ps bunches. The state-of-the-art of these experiments will be covered, including the progress on plasma waveguiding of TW pulses over many diffraction lengths. The talk will also provide an outlook for the coming few years. This part includes proposed schemes for improvements in the area of injection, such as 'all-optical' injection and injection based on GV/m 'pulsed-DC' photoguns.  
Video of talk
Transparencies
WEPLT118 Performance of the TU/e 2.6 Cell Rf-photogun in the 'Pancake' Regime 2125
 
  • S.B. van der Geer, G.J.H. Brussaard, O.J. Luiten, M.J. Van der Wiel
    TUE, Eindhoven
  • G. Pöplau
    Rostock University, Faculty of Engineering, Rostock
  • M.J. de Loos
    PP, Soest
 
  The 2.6 cell rf-photogun currently in operation at Eindhoven University of Technology has been designed as a booster for a 2 MeV semi-DC accelerator with a field of 1 GV/m. In this paper we present GPT simulation results of the TU/e gun, operated without its pre-accelerator, in the low-charge short-pulse regime. The main part of the paper describes detailed calculations of bunch lengthening due to path-length differences and space-charge effects, making use of high-precision field-maps and the newly developed 3D mesh-based space-charge model of GPT. It is shown that with the present set-up bunches can be produced that are well suited for injection into a planned experiment for controlled acceleration in a plasma-wakefield accelerator.