Marnix van der Wiel and Seth Brussaard

Centre for Plasma Physics and Radiation Technology Department of Applied Physics Eindhoven University of Technology, The Netherlands

Beyond RF- technology : towards GV - TV/m

Options: - electron-driven plasma waves (SLAC 'afterburner')

- laser-driven plasma waves
 - laser in vacuum

Laser-driven plasma waves: principle

Longitudinal wake-field:

blue - accelerating,

red - decelerating.

Transverse wake-field:

blue - focusing,

red - defocusing.

 λ_{plasma} = 10 µm – 1 mm ; gradient 1 GV/m – 1 TV/m, limited by wave breaking

Laser-driven plasma waves : Options

EPAC 04, Luzern, July 5-9, 2004

Hot-beam Source

- 4- electron trapping by wave breaking *
- 5- acceleration in wakefield

electron beam:

- charge per pulse several nC
- short pulse (~ 100 fs)
- norm. emittance few µm

but

- MeV-'temperature' beam - shot-to-shot intensity variations of factor 3-10

*= instability

Hot-beam Source: Experiments

Najmudin et al., Phys. Plasmas 10, 2071 (2003)

EPAC 04, Luzern, July 5-9, 2004

- pulsed radiolysis / electron-photon pump probe
- X- and γ -ray source
- use energy slice for injection into 2nd stage wakefield accelerator
- proton beams ≤ 10 MeV (from foil) for radio-isotope production

Beat-wave Acceleration

Clayton, Joshi, Rosenzweig et al., Phys. Plasmas 11, 2875 (2004)

EPAC 04, Luzern, July 5-9, 2004

Controlled Wakefield Acceleration: Lay-out & Issues

Alternative for injection / compression / acceleration

- 1: accelerating field
- 2: wake-field potential
- 3: laser pulse
- 4: initial electron bunch
- 5: trapped e-bunch

Khachatryan, Van Goor, Boller, Proceedings PAC'03, 1900 (2003).

Issue 1: Plasma Waveguiding of TW Laser Pulses

Option	Process	Remarks
 self-focussing 	local change of refract. index due to relativ. mass correction of oscillating electrons	instability
 gas-filled capillary 	internal reflection; laser ionizes gas	single shot
 pulsed discharge in capillary 	plasma cooling at capillary wall; radially expanding shock wave creates hollow density profile	simple, durable, > 90% transmission
 laser ionization 	ionization and heating creates shockwave and hollow profile	optically complex; works down to radii of 5 µm

Capillary discharge plasma channel

Butler, Spence, Hooker, PRL 89,185003 (2002)

Status: - simple and cheap - good transmission of TW pulses

- further work needed for pressures $\leq 10^{18}$ cm⁻³ ($\lambda_{plasma} \geq 300$ µm)

EPAC 04, Luzern, July 5-9, 2004

Laser-produced plasma channels

Nikitin et al, Phys Rev E 59,3839 (1999)

Gaul et al, Appl Phys Letters 77,4112 (2000)

Issue 2: Synchronisation of RF and laser

- State-of-the-art for case of <u>RF master / laser slave</u>: ~ 1 ps
- Recent progress at TU- Eindhoven by choosing laser master / RF slave: 80 fs (*Kiewiet et al., NIM-A, A484, 619, 2002*)

• Easy route towards 10 fs: - klystron power stability $0.1\% \rightarrow 0.05\%$ - RF cavity 2.6 cell $\rightarrow 2.5$ cell

Issue 3: Injection

Options for 10-100 fs bunches with reasonable charge (I _{peak} = 100 A –1 kA)	achieved	promised
• external:		
- RF photogun & metal cathode	1 ps, 100 pC	100 fs, 10 pC
- pulsed-DC photogun & metal cathode	(1.3 GV / m)	100 fs, 100 pC
 idem, with novel approach to ultra-high brightness 		10 fs, 50 pC
 internal: optical injecton wake driver inj.1 → ← inj.2 		1 fs, 1 pC

RF photogun

Fred Kiewiet et al., thesis TU-Eindhoven and submitted to Phys.Rev. ST

Pulsed-DC photogun: ≥ 1GV / m on cathode

Dmitry Vyuga and Seth Brussaard, TU-Eindhoven

Integrated Experiment with present components

Standard approach:

- keep space charge low near cathode
- use ps-laser on (high-efficiency) ps-response cathode
- compress to sub-ps at high energy

Novel, <u>counter-intuitive</u> approach for compact injector:

- use fs-laser on (low-efficiency) fs-response cathode

- keep bunch in 'pancake' regime up to γ as high as possible

- this <u>reduces</u> emittance dilution due to Coulomb explosion

Pancakes evolving into bunches with purely linear self-fields

Luiten, Van der Geer and Van der Wiel, PRL 2004 (accepted)

EPAC 04, Luzern, July 5-9, 2004

Conclusion & Outlook: 1

- *'Hot-beam' source:*
 - works; provides energies up to few 100 MeV
 - may find niche applications
 - progress towards mono-energetic beams
 requires all-optical injection of ~1 fs bunches

Conclusion & Outlook : 2

- Controlled acceleration:
 - components available for first demo of 'regular' acceleration and of novel injection / compression / acceleration scheme
 - integrated experiments being prepared by national consortia in both The Netherlands¹⁾ and the UK²⁾
 - full demo requires further development
 - on injector: demo of laser radial profile shaping and / or of pulsed-DC photogun
 - on plasma channel: operation at lower pressure / longer plasma waves

1) TU-Eindhoven, FOM-Institute for Plasma Physics, University Twente 2) Univ Strathclyde, RAL, Imperial College, Oxford Univ, Daresbury Lab, St. Andrew's Univ, Univ Abertay