A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Assmann, R.W.

Paper Title Page
MOPLT005 An Improved Collimation System for the LHC 536
 
  • R.W. Assmann, O. Aberle, A. Bertarelli, H.-H. Braun, M. Brugger, L. Bruno, O.S. Brüning, S. Calatroni, E. Chiaveri, B. Dehning, A. Ferrari, B. Goddard, E.B. Holzer, J.-B. Jeanneret, J.M. Jimenez, V. Kain, M. Lamont, M. Mayer, E. Métral, R. Perret, S. Redaelli, T. Risselada, G. Robert-Demolaize, S. Roesler, F. Ruggiero, R. Schmidt, D. Schulte, P. Sievers, V. Vlachoudis, L. Vos, G. Vossenberg, J. Wenninger
    CERN, Geneva
  • I.L. Ajguirei, I. Baishev, I.L. Kurochkin
    IHEP Protvino, Protvino, Moscow Region
  • D. Kaltchev
    TRIUMF, Vancouver
  • H. Tsutsui
    SHI, Tokyo
 
  The LHC design parameters extend the maximum stored beam energy 2-3 orders of magnitude beyond present experience. The handling of the high-intensity LHC beams in a super-conducting environment requires a high-robustness collimation system with unprecedented cleaning efficiency. For gap closures down to 2mm no beam instabilities may be induced from the collimator impedance. A difficult trade-off between collimator robustness, cleaning efficiency and collimator impedance is encountered. The conflicting LHC requirements are resolved with a phased approach, relying on low Z collimators for maximum robustness and hybrid metallic collimators for maximum performance. Efficiency is further enhanced with an additional cleaning close to the insertion triplets. The machine layouts have been adapted to the new requirements. The LHC collimation hardware is presently under design and has entered into the prototyping and early testing phase. Plans for collimator tests with beam are presented.  
MOPLT006 The New Layout of the LHC Cleaning Insertions 539
 
  • R.W. Assmann, O. Aberle, O.S. Brüning, S. Chemli, D. Gasser, J.-B. Jeanneret, J.M. Jimenez, V. Kain, E. Métral, G. Peon, S. Ramberger, C. Rathjen, T. Risselada, F. Ruggiero, L. Vos
    CERN, Geneva
  • D. Kaltchev
    TRIUMF, Vancouver
 
  The improved LHC collimation system required significant changes in the layout and design of the warm insertion IR7. Requirements for collimation, optics, impedance, vacuum, and additional infrastructure are described and the adopted layout is discussed. Various design principles have been explored during the re-design, ranging from a regular 90 degree lattice and special low impedance lattices to an option with additional warm quadrupole units that could have extended the usable space for collimator installations in the insertion. The various constraints for the optics and cleaning design in the LHC cleaning insertions are summarized. Magnet positions and collimators were moved significantly, such that a good cleaning efficiency was maintained while impedance was reduced by a factor of two. Metallic phase 2 collimators allow a better efficiency than originally achievable and additional scrapers were allocated. The required infrastructure was specified, including a powerful cooling system for the collimators.  
MOPLT008 The Mechanical Design for the LHC Collimators 545
 
  • A. Bertarelli, O. Aberle, R.W. Assmann, E. Chiaveri, T. Kurtyka, M. Mayer, R. Perret, P. Sievers
    CERN, Geneva
 
  The design of the LHC collimators must comply with the very demanding specifications entailed by the highly energetic beam handled in the LHC: these requirements impose a temperature on the collimating jaws not exceeding 50°C in steady operations and an unparalleled overall geometrical stability of 25micro-m on a 1200 mm span. At the same time, the design phase must meet the challenging deadlines required by the general time schedule. To respond to these tough and sometimes conflicting constraints, the chosen design appeals to a mixture of traditional and innovative technologies, largely drawing from LEP collimator experience. The specifications impose a low-Z material for the collimator jaws, directing the design towards graphite or such novel materials as 3-d Carbon/Carbon composites. An accurate mechanical design has allowed to considerably reduce mechanical play and optimize geometrical stability. Finally, all mechanical studies were supported by in-depth thermo-mechanical analysis concerning temperature distribution, mechanical strength and cooling efficiency.  
MOPLT010 Collimation of Heavy Ion Beams in LHC 551
 
  • H.-H. Braun, R.W. Assmann, A. Ferrari, J.-B. Jeanneret, J.M. Jowett
    CERN, Geneva
  • I.A. Pshenichnov
    RAS/INR, Moscow
 
  The LHC collimation system is designed to cope with requirements of proton beams having 100 times higher beam power than the nominal LHC heavy ion beam. In spite of this, specific problems occur for ion collimation, due to different particle-collimator interaction mechanism for ions and protons. Ions are subject to hadronic fragmentation and electromagnetic dissociation, resulting in a non-negligible flux of secondary particles of small angle divergence and Z/A ratios slightly different from the primary beam. These particles are difficult to intercept by the collimation system and can produce significant heat-load in the superconducting magnets when they hit the magnet vacuum chamber. A computer program has been developed to obtain quantitative estimates of the magnitude and location of the particle losses. Hadronic fragmentation and electromagnetic dissociation of ions in the collimators were considered within the frameworks of abrasion-ablation and RELDIS models, respectively. Trajectories of the secondary particles in the ring magnet lattice and the distribution of intercept points of these trajectories with the vacuum chamber are computed. Results are given for the present collimation system design and potential improvements are discussed.  
WEPLT006 Expected Performance and Beam-based Optimization of the LHC Collimation System 1825
 
  • R.W. Assmann, E.B. Holzer, J.-B. Jeanneret, V. Kain, S. Redaelli, G. Robert-Demolaize, J. Wenninger
    CERN, Geneva
 
  The cleaning efficiency requirements in the LHC are 2-3 orders of magnitude beyond the requirements at other super-conducting circular colliders. The achievable ideal cleaning efficiency in the LHC is presented and the deteriorating effects of various physics processes and imperfections are discussed in detail for the improved LHC collimation system. The longitudinal distribution of proton losses downstream of the betatron cleaning system are evaluated with a realistic aperture model of the LHC. The results from simplified tracking studies are compared to simulations with complete physics and error models. Possibilities for beam-based optimization of collimator settings are described.  
THPKF011 Vibration Measurements at the Swiss Light Source (SLS) 2275
 
  • S. Redaelli, R.W. Assmann, W. Coosemans
    CERN, Geneva
  • M. Böge, M. Dehler, L. Rivkin
    PSI, Villigen
 
  Vibration measurements have been carried out at the Swiss Light Source (SLS) site as part of a collaboration between the Paul Scherrer Institute (PSI) and the European Organization for Nuclear Research (CERN). The vibration level of the SLS floor and of some lattice elements of the SLS ring have been monitored under various experimental conditions. In particular, vibration spectra of lattice quadrupoles have been measured with a circulating beam and compared with the spectra of transverse beam positions, as measured with beam position monitors. This paper summarizes the results.