A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z    

Arntz, F.O.

Paper Title Page
TUPKF051 A 500 kV Power System for a Gridded Sheet-beam Klystron 1066
 
  • M.A. Kempkes, F.O. Arntz, J.A. Casey, M.P.J. Gaudreau, N. Reinhardt, R.P. Torti
    Diversified Technologies, Inc., Bedford
 
  The Next Generation Linear Collider (NLC) will require hundreds of X-band high power klystrons. These klystrons are typically cathode pulsed at 500 kV and 265 A each, with 1.6 microsecond pulses of RF, and a complex microwave delay line to achieve 400 ns RF pulses. Because the pulsed voltage is so high, CV2f losses will lead to many millions of dollars per year of wasted power. The klystron group at SLAC, working with Calabazas Creek Research (CCR), is developing a gridded, sheet beam klystron. This new klystron design avoids the CV2 losses of cathode pulsing because its cathode is not pulsed - it remains at a constant high voltage. Instead, the grid voltage is pulsed over a much smaller (6 kV) voltage range. This paper will describe DTI's progress in development of the electronics required to drive this new klystron, including a 500 kV multiplier power supply and grid modulator, a multi-concentric high voltage cable, which also acts as the pulse forming line, and an advanced, reentrant cable connection to the klystron itself. This design allows the klystron to be located adjacent to the beamline, and separated from the power electronics, improving RF efficiency, maintainability, and overall reliability.  
WEPKF076 Solid-state Marx Bank Modulator for the Next Linear Collider 1783
 
  • M.A. Kempkes, F.O. Arntz, J.A. Casey, M.P.J. Gaudreau
    Diversified Technologies, Inc., Bedford
 
  The Next Generation Linear Collider (NLC) will require hundreds to thousands of pulse modulators to service more than 3300 klystrons. DTI recently investigated the use of a solid-state Marx switch topology for the NLC, and has transitioned this work into the development of a full-scale, 500 V solid state Marx system. Combined with recent advances in semiconductor technology and packaging, these efforts have moved the performance of the Marx pulser far ahead of early estimates. The Marx pulser eliminates the pulse transformer, which is associated with significant loss of performance and a 15-20% penalty in the efficiency of a conventional modulator. The increase in efficiency attributable to the Marx topology can account for over $100M in power cost savings over ten years of NLC operation, an amount comparable to the acquisition costs of the pulsed power systems. In this paper, DTI will discuss the design and development of the Marx Bank modulator. Its performance scales to 125 ns risetime (10-90%) for either a 500 kV, 265 A pulse (for one klystron), or a 500 kV, 530 A pulse (for two klystrons). The use of a unique, common mode inductive charging system allows transfer of filament power without separate isolation transformers.