A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W    

multipole

Paper Title Other Keywords Page
WEPMA039 Effect of Magnetic Field Coupling On INDUS-2 Quadrupole Magnets quadrupole, simulation, coupling, dipole 378
 
  • G. Sinha, A. Kumar, A. Mishra, G. Singh
    RRCAT, Indore (M. P.)
  The distances between the magnets in the Indus-2, are small and as a result, the magnetic field of one magnet may affect the fields of the adjacent magnets. Therefore, it is important to find out the effect of mutual coupling between magnets in the actual condition in the ring and the ways to overcome this problem. In this paper, we will discuss how the field quality of Quadrupole magnets (QPM) in the ring is affected when accompanied by various corrector dipole magnets (CDM)(vertical and horizontal) and sextupole magnets (SPM). Variation of integrated quadrupole strength in presence of CDM is measured at various field excitations and also by varying the distance between the magnets using a rotating coil. Experimental results are compared with the results obtained from 3D simulations. Possibilities of studying the interference effect by scanning the field by a Hall probe, is explored. Dependence of field interference on the distance between magnets, pole gap and the steel length are studied. Effects of the adjacent magnets on the higher order multipole of QPM are also examined.  
 
THPMA014 Mechanical Stability of Open-type Quadrupole Magnets for a 2.5 GeV SRS (Indus-2) quadrupole, magnet-design, vacuum, dipole 646
 
  • S. Konjeti, S. Das, M. G. Karmarkar, P. K. Kulshreshtha, K. Ruwali, K. Swarna
    RRCAT, Indore (M. P.)
  • M. K. Ghosh
    BHU, Varanasi
  The open type Quadrupole magnets (Max. gradient: 16 T/m) for 2.5 GeV Indus-2 are made in C-configuration in which both of outer vertical sections of the steel are removed to take out the emerging synchrotron beam lines, in the region immediately adjacent to main dipole magnets of the ring. This induces engineering complexity relating to mechanical stability that critically controls the deviations in magnetic centre and field quality. To meet the stringent field quality requirements, the mechanical structure, which is precisely holding the magnet poles, is designed for minimum deflection at maximum gradient. The magnet is simulated with coupled field Emag-structural analysis, using ANSYS. The measurement of magnetic centre shift in prototype magnet assemblies with maximum excitation current is within 15 microns. The magnetic measurement results show that the higher order multipoles are low and not changing with excitation current. The optimized open-type Quadrupole magnet design is implemented in series production of all 32 magnets. The mechanical assembly accuracies and stability of series magnets with excitation are discussed in this paper.  
 
THPMA096 Installation and Integration of Indus-2 dipole, vacuum, radiation, synchrotron 782
 
  • S. Chouksey, S. Kotaiah, S. S. Prabhu, V. Prasad, R. Ramasubramanian, S. K. Shukla, D. P. Yadav
    RRCAT, Indore (M. P.)
  The Synchrotron Radiation Sources consist of a large number of components of varying nature. Some components are light but highly delicate whereas some are big and heavy. However all components need a careful handling during their installation. Unit-cell mock-up assembly and virtual simulation of the installation process using software tools contributed significantly in visualizing various handling schemes, checking interferences and defining the assembly sequence. We have recently completed the installation and integration of 2.5 GeV Synchrotron Radiation Source, Indus-2, by adopting a set procedure of installation and pre-defined sequence. This paper presents, an overview of procedures, sequence of assembly, equipments and toolings used for material handling and safety precautions taken during the whole task of installation and assembly.