Author: Zemlyansky, I.M.
Paper Title Page
MOPRO018 Booster of Electrons and Positrons (BEP) Upgrade to 1 GeV 102
 
  • D.B. Shwartz, D.E. Berkaev, D.V. Bochek, I. Koop, I.E. Korenev, A.A. Krasnov, I.K. Sedlyarov, P.Yu. Shatunov, Y.M. Shatunov, I.M. Zemlyansky
    BINP SB RAS, Novosibirsk, Russia
 
  At present new electron and positron injection complex in BINP is comissioned and ready to feed VEPP-2000 collider with intensive beams with energy of 450 MeV. To obtain peak luminosity limited only by beam-beam effects in whole energy range of 160-1000 MeV and to perform high average luminosity with small dead time the top-up injection is needed. Booster BEP upgrade to 1 GeV includes modification of all magnetic elements, including warm dipoles magnetic field increase up to 2.6 T, vacuum chamber, RF-system, injection-extraction system. BEP comissioning is scheduled to the end of 2014.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBA03 Recent Beam-beam Effects and Luminosity at VEPP-2000 924
 
  • D.B. Shwartz, D.E. Berkaev, A.S. Kasaev, I. Koop, A.N. Kyrpotin, A.P. Lysenko, E. Perevedentsev, V.P. Prosvetov, Yu. A. Rogovsky, A.L. Romanov, A.I. Senchenko, P.Yu. Shatunov, Y.M. Shatunov, I.M. Zemlyansky, Yu.M. Zharinov
    BINP SB RAS, Novosibirsk, Russia
 
  Funding: Work is supported by the Ministry of Education and Science of the Russian Federation, grant N 14.518.11.7003
VEPP-2000's last season was dedicated to the energy range of 160-520 MeV per beam. The application of round colliding beams concept along with the accurate orbit and lattice correction yielded the high peak luminosity of 1.2*1031 cm-2s−1 at 500 MeV with average luminosity of 0.9*1031 cm-2s−1 per run. The total beam-beam tune shift up to 0.174 was achieved in the runs at 392.5 MeV. This corresponds to beam-beam parameter ksi = 0.125 per one interaction point. The injection system is currently being upgraded to allow for the injection at the top energy of VEPP-2000 collider and to eliminate the present lack of positrons.
 
slides icon Slides TUOBA03 [4.475 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOBA03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)