Author: Schwarz, M.
Paper Title Page
MOPRO062 Investigating Polarisation and Shape of Beam Microwave Signals at the ANKA Storage Ring 4090
 
  • J. Schwarzkopf, M. Brosi, C. Chang, E. Hertle, V. Judin, B. Kehrer, A.-S. Müller, A.-S. Müller, A.-S. Müller, M. Schuh, M. Schwarz, P. Schönfeldt, P. Schütze, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • F. Caspers
    CERN, Geneva, Switzerland
 
  At the ANKA synchrotron radiation facility measurements in the microwave range (~10 to 12 GHz) employing a LNB (Low Noise Block), which is the receiving part of a Satellite-TV system, have been carried out. Experiments showed that the observed signal depends on the length of the electron bunches. Furthermore the temporal shape of the microwave signal depends on the detector's position along the accelerator. Due the LNB antenna's sensitivity to polarisation it was also possible to measure the polarisation along the several ns long signal, revealing polarised and non-polarised regions. This paper describes the experimental setup and summarises the observations of the systematic studies performed with the LNB system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO066 Status of FLUTE 231
 
  • M. Schuh, I. Birkel, A. Borysenko, A. Böhm, N. Hiller, E. Huttel, S. Höninger, V. Judin, S. Marsching, A.-S. Müller, A.-S. Müller, A.-S. Müller, S. Naknaimueang, M.J. Nasse, R. Rossmanith, R. Ruprecht, M. Schwarz, M. Weber, P. Wesolowski
    KIT, Eggenstein-Leopoldshafen, Germany
  • R.W. Aßmann, M. Felber, K. Flöttmann, M. Hoffmann, H. Schlarb
    DESY, Hamburg, Germany
  • H.-H. Braun, R. Ganter, V. Schlott, L. Stingelin
    PSI, Villigen PSI, Switzerland
 
  FLUTE, a new linac-based test facility and THz source is currently being built at the Karlsruhe Institute of Technology (KIT) in collaboration with DESY and PSI. It consists of an RF photo gun and a traveling wave linac accelerating electrons to beam energies of ~41 MeV in the charge range from a few pC up to 3 nC. The electron bunch will then be compressed in a magnetic chicane in the range of 1 - 300 fs, depending on the charge, in order to generate coherent THz radiation with high peak power. An overview of the simulation and hardware status is given in this contribution.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO067 Analytic Calculation of Electric Fields of Coherent THz Pulses 234
 
  • M. Schwarz, P. Basler, M. Guenther, A.-S. Müller, M. von Borstel
    KIT, Karlsruhe, Germany
  • M.T. Schmelling
    MPI-K, Heidelberg, Germany
 
  The coherently emitted electric field pulse of a short electron bunch is obtained by summing the fields of the individual electrons, taking phase differences due to different longitudinal positions into account. For an electron density, this sum becomes an integral over the charge density and frequency spectrum of the emitted radiation, which, however, is difficult to evaluate numerically. In this paper, we present a fast analytic method valid for arbitrary bunch shapes. We also include shielding effects of the beam pipe and consider ultra-short bunches, where the high frequency part of the coherent synchrotron spectrum is cut-off not by the inverse bunch length but by the critical frequency of synchrotron radiation. Our technique is applied to bunches, simulated simulated for the linac-based FLUTE accelerator test facility at KIT.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO067  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPRO068 Fluctuation of Bunch Length in Bursting CSR: Measurement and Simulation 237
 
  • P. Schönfeldt, A. Borysenko, E. Hertle, N. Hiller, V. Judin, A.-S. Müller, S. Naknaimueang, M. Schuh, M. Schwarz, J.L. Steinmann
    KIT, Karlsruhe, Germany
 
  The ANKA electron storage ring of the Karlsruher Institute of Technology (KIT, Germany) is regularly operated in low-alpha mode to produce short bunches for the generation of coherent synchrotron radiation (CSR). This paper evaluates systematic bunch length measurements taken in low-alpha operation of the ANKA storage ring. Above the bursting threshold not only the emission of CSR occurs in bursts, but also a continuous fluctuation of the bunch's length is observed. The measurements were carried out using concurrent multi turn (using a streak camera) as well as single shot (using electro-optical spectral decoding) methods. Furthermore, we compare information obtained on the fluctuation to simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO068  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZA02 THz Facility at ELBE: A Versatile Test Facility for Electron Bunch Diagnostics on Quasi-CW Electron Beams 933
 
  • M. Gensch, B.W. Green, J. Hauser, S. Kovalev, M. Kuntzsch, U. Lehnert, P. Michel, R. Schurig
    HZDR, Dresden, Germany
  • A. Al-Shemmary, V. B. Asgekar, T. Golz, H. Schlarb, N. Stojanovic, S. Vilcins
    DESY, Hamburg, Germany
  • A.S. Fisher
    SLAC, Menlo Park, California, USA
  • G. Geloni
    XFEL. EU, Hamburg, Germany
  • A.-S. Müller, M. Schwarz
    KIT, Karlsruhe, Germany
  • N.E. Neumann, D. Plettemeier
    TU Dresden, Dresden, Germany
 
  At the Helmholtz-Zentrum Dresden-Rossendorf near Dresden a quasi-cw low-energy electron linear accelerator based on superconducting radiofrequency technology is operated successfully for more than 10 years. The ELBE accelerator is driving several secondary radiation sources including 2 infrared free electron lasers. A new addition will be a THz facility that aims to make use of super-radiant THz radiation. In its final form the THz facility shall consist of one coherent diffraction radiator and one undulator source which provide high-field THz pulses at unprecedented repetition rates. While the medium term goal is to establish a unique user facility for nonlinear THz science, the THz sources are already used as a test facility for novel diagnostic techniques on quasi-cw electron beams. The progress of the developments is reported and an outlook into future challenges and opportunities is given.  
slides icon Slides TUZA02 [3.041 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUZA02  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME123 Electro-optical Bunch Length Monitor for FLUTE: Layout and Simulations 3527
 
  • A. Borysenko, E. Hertle, N. Hiller, V. Judin, B. Kehrer, S. Marsching, A.-S. Müller, M.J. Nasse, R. Rossmanith, R. Ruprecht, M. Schuh, M. Schwarz, P. Wesolowski
    KIT, Karlsruhe, Germany
  • B. Steffen
    DESY, Hamburg, Germany
 
  Funding: This work is funded by the European Union under contract PITN-GA-2011-289191
A new compact linear accelerator FLUTE is currently under construction at Karlsruhe Institute of Technology (KIT) in collaboration with DESY and PSI. It aims at obtaining femtosecond electron bunches (~1fs - 300 fs) with a wide charge range (1 pC - 3 nC) and requires a precise bunch length diagnostic system. Here we present the layout of a bunch length monitor based on the electro-optic technique of spectral decoding using an Yb-doped fiber laser system (central wavelength 1030 nm) and a GaP crystal. Simulations of the electro-optic signal for different operation modes of FLUTE were performed and main challenges are discussed in this talk. This work is funded by the European Union under contract PITN-GA-2011-289191
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)