Author: Milas, N.
Paper Title Page
MOPRO048 Update on Sirius, the New Brazilian Synchrotron Light Source 191
 
  • L. Liu, A.P.B. Lima, N. Milas, A.H.C. Mukai, X.R. Resende, A.R.D. Rodrigues, F.H. de Sá
    LNLS, Campinas, Brazil
 
  Sirius is a 3 GeV synchrotron light source that is being built by the Brazilian Synchrotron Light Laboratory (LNLS). The electron storage ring uses the multi-bend-achromat approach (5BA in this case) to achieve a very low beam emittance of 0.28 nm.rad. The 518 m circumference contains 20 straight sections of alternating 6 and 7 meters in length, to be used for insertion devices as well as injection and RF systems. The 5BA cell is modified to accommodate a thin high field dipole (for 1.4˚ deflection) in the center of the middle bend producing hard X-ray radiation (12 keV critical energy) with a modest contribution to the total energy loss. This high field dipole (2.0 T) will be made of permanent magnet material, whereas the low field (0.58 T) ones, responsible for the main beam deflection, will be electromagnetic. Many challenges are associated with this kind of lattice, including both in beam dynamics and in accelerator engineering, that require R&D on new techniques. In this paper we discuss the main issues and achievements for Sirius during the last year.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRO048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPRI041 Study of Collective Beam Instabilities for Sirius 1653
 
  • F.H. de Sá, H.O.C. Duarte, L. Liu, N. Milas, X.R. Resende
    LNLS, Campinas, Brazil
 
  In this paper we present the on going work of construction of the Sirius impedance budget and instability threshold estimates for several machine operation scenarios.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUPRI041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME082 Sirius Diagnostic Beamlines 3427
 
  • N. Milas, L. Liu, A.R.D. Rodrigues
    LNLS, Campinas, Brazil
 
  Sirius is a 3 GeV synchrotron light source that is being built by the Brazilian Synchrotron Light Laboratory (LNLS). It will be part of a novel class of light sources with emittances in the sub-nm level. Both horizontal and vertical beam sizes at the dipoles will be of the order of or below 10μm, creating difficulties for measuring them using conventional techniques. This paper proposes a series of beamlines using different techniques that, combined, will be able not only to resolve beam sizes, but also measure energy spread and local transverse coupling in the storage ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME169 Status of the New Beam Size Monitor at SLS 3662
 
  • J. Breunlin, Å. Andersson
    MAX-lab, Lund, Sweden
  • N. Milas
    LNLS, Campinas, Brazil
  • M. Rohrer, Á. Saá Hernández, V. Schlott, A. Streun
    PSI, Villigen PSI, Switzerland
 
  The Swiss Light Source (SLS) campaign on vertical emittance minimization and measurement required a beam size monitor with the ability to verify a sub-pmrad vertical emittance. This corresponds to a beam height of less than 4 μm. Within the TIARA Work Package ‘SLS Vertical Emittance Tuning’ a new beam size monitor was designed and built. The monitor is based on the imaging of the pi-polarized synchrotron radiation (SR) in the visible and UV spectral ranges. Besides imaging the monitor provides interferometric methods using vertically or horizontally polarized SR. With these complementary methods the consistency of beam size measurements is verified. An intermediate configuration of the monitor beamline using a lens as the focusing element has been commissioned in 2013. With this setup a vertical beam size of 4.8±0.5 μm, corresponding to a vertical emittance of 1.7±0.4 pmrad has been measured. During 2014 the monitor was commissioned in its final configuration with a toroidal mirror. The use of reflective optics allows wider bandwidth imaging and thus higher intensity. We report on challenges during commissioning and present first images of SR taken with the toroidal mirror.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME169  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)