Author: Lehrach, A.
Paper Title Page
MOPRI070 2MeV Electron Cooler for COSY and HESR – First Results 765
 
  • V. Kamerdzhiev, U. Bechstedt, F.M. Esser, O. Felden, R. Gebel, A.J. Halama, F. Klehr, G. Langenberg, A. Lehrach, B. Lorentz, R. Maier, D. Prasuhn, K. Reimers, M. Retzlaff, R. Stassen, H. Stockhorst, R. Tölle
    FZJ, Jülich, Germany
  • N. Alinovskiy, T.V. Bedareva, E.A. Bekhtenev, O.V. Belikov, V.N. Bocharov, V.V. Borodich, M.I. Bryzgunov, A.V. Bubley, V.A. Chekavinskiy, V.G. Cheskidov, B.A. Dovzhenko, A.I. Erokhin, M.G. Fedotov, A.D. Goncharov, K. Gorchakov, V.K. Gosteev, I.A. Gusev, G.V. Karpov, Y.I. Koisin, M.N. Kondaurov, V.R. Kozak, A.M. Kruchkov, A.D. Lisitsyn, I.A. Lopatkin, V.R. Mamkin, A.S. Medvedko, V.M. Panasyuk, V.V. Parkhomchuk, I.V. Poletaev, V.A. Polukhin, A.Yu. Protopopov, D.N. Pureskin, A.A. Putmakov, V.B. Reva, P.A. Selivanov, E.P. Semenov, D.V. Senkov, D.N. Skorobogatov, N.P. Zapiatkin
    BINP SB RAS, Novosibirsk, Russia
  • J. Dietrich
    HIM, Mainz, Germany
  • T. Katayama
    Nihon University, Narashino, Chiba, Japan
  • L.J. Mao
    IMP, Lanzhou, People's Republic of China
 
  The 2 MeV electron cooler was installed in the COSY ring in the spring 2013. The new system enables electron cooling in the whole energy range of COSY. The electron beam is guided by longitudinal magnetic field all the way from the electron gun to the collector. This well-proven optics scheme was chosen because of the wide electron energy range of 0.025-2 MeV. The electrostatic accelerator consists of 33 individual sections of identical design. Electrical power to each section is provided by a cascade transformer. Electron beam commissioning and first studies using proton and deuteron beams were carried out. Electron cooling of proton beam up to 1662 MeV kinetic energy was demonstrated. Maximum electron beam energy achieved so far amounted to 1.25 MeV. Voltage up to 1.4 MV was demonstrated. The cooler was operated with electron current up to 0.5 A. The paper provides insights into the recent progress in high energy electron cooling at COSY and perspectives for the HESR ring at FAIR.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPRI070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO062 Spin Tune Decoherence in Multipole Fields 3017
 
  • Y. Senichev, A.N. Ivanov, A. Lehrach, R. Maier, D. Zyuzin
    FZJ, Jülich, Germany
  • S.N. Andrianov
    St. Petersburg State University, St. Petersburg, Russia
 
  This article analyzes possible limitations in the method to search for the electric dipole moment (EDM) using polarized particles in a storage ring. It is well known that for detection of the electric dipole moment one needs to create such conditions where the particle's spin oscillations can be caused only by the EDM. Really, there are two possible methods for EDM search using a storage ring: resonant spin buildup in a magnetostatic ring and “frozen” spin method in an electrostatic ring with “magic” energy. Both methods have common limitations caused by spin decoherence. In the frame of self consistent theory the reasons of the spin decoherence are classified independently on method and discussed taking into consideration multipole components of external fields, as well as the nonlinearities of RF fields.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO062  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO063 Spin Tune Parametric Resonance Investigation 3020
 
  • Y. Senichev, A.N. Ivanov, A. Lehrach, R. Maier, D. Zyuzin
    FZJ, Jülich, Germany
  • S.N. Andrianov
    St. Petersburg State University, St. Petersburg, Russia
 
  The idea of resonant spin oscillation method was modernized and improved in Forschungszentrum Julich in the proposed experiment at the COSY ring. The resonant method is based on spin tune parameterization using transverse RF magnetic or/and electric field. The spin orientation smearing due to the finite spin coherence time (SCT) plays a crucial in the proposed experiment to search for the electric dipole moment. Our analysis is based on the T-BMT differential equations for spin together with shorten motion equations. Using well developed theory of Mathieu's differential equations we have got simplified analytic solution for prediction of spin behavior. In this paper we have numerically evaluated all effects having fundamental contributions from our point of view.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)