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Abstract 
The idea of resonant spin oscillation method was 

modernized and improved in Forschungszentrum Jülich in 
the proposed experiment at the COSY ring. The resonant 
method is based on spin tune parameterization using 
transverse RF magnetic or/and electric field. The spin 
orientation smearing due to the finite spin coherence time 
(SCT) plays a crucial role in the proposed experiment to 
search for the electric dipole moment. Our analysis is 
based on the T-BMT differential equations for spin 
together with shorten motion equations. Using well 
developed theory of Mathieu's differential equations we 
have got simplified analytic solution for prediction of spin 
behaviour. In this paper we have numerically evaluated all 
effects having fundamental contributions. 

RESONANCE BUILD-UP OF EDM 
CONTRIBUTION 

As we know the spin   is a quantum value, but in the 
classical physics representation the “spin” means an 
expectation value of a quantum mechanical spin operator. 
Taking into account the Lorentz transformation of 
equation for spin with the z-direction of motion we have:  
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where d


, are magnetic and electric dipole moments,   

is the relative  longitudinal velocity and zyxzyx BE ,,,, ,  are 

the electric and magnetic field components in the 
laboratory coordinates system. 

Equations with RF Electrical Deflector 
The possible method proving the existence of EDM 

may be the resonant build-up using the RF deflector with 
the horizontal electric field or considered later the RF 
solenoid with the vertical magnetic field [1,2]. The 
electric field in RF deflector can be submitted as function 
dependent on a time t  and a curvilinear coordinate 

tcs   : 

 















1
 2cos21)(

)2cos()(

)()(

n
rev

cir

rf

rfrf

x

tnf
L

l
sE

tfEtE

sEtEE



  (2) 

where rfl is a deflector length, cirL is orbit of length, rff  

is RF frequency of deflector. Taking into account

revrfrf ff /  , where revf  is a revolution frequency,    

equations system (1) for all projection  zyx SSSS ,,  

can be written as   
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 and   is dimensionless 

coefficient defined by the relation with mced 4/ , 

e  is the spin tune of a particle moving in a magnetic 

field yB  due to the presumable existing electric dipole 

moment d. The phase   is very important for the 

longitudinal oscillations of an arbitrary particle, since it 
defines the revolution frequency dependence on the 
particle energy. At present   is taken to be a constant, 

but later the synchrotron oscillation will be taken into 
consideration.                

Resonant Condition for RF Electrical Deflector 
The equations system (3) does not have analytical 

solutions, therefore it will be solved by the numerical 
integration. Nevertheless in order to understand how to 
build-up a spin resonance we first solve (3) in approach of

1, zxS . Actually, this approach works well, since in 

future experiments the maximum growth of components 

zxS ,  is expected to be up to value of 10-3÷10-6.  

First, we solve the system of equations under the 
assumption of the smallness of parameters 1, h and 
synchrotron oscillating absent: 

 
      
        0sinsin

cos)(cos2

(4)                                                  

222

22
2

2






xrfyrf

zse

zes
z

SnSnh

Shh

S
d

Sd







 

5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing
ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-THPRO063

THPRO063
3020

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

14
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

05 Beam Dynamics and Electromagnetic Fields
D02 Non-linear Dynamics - Resonances, Tracking, Higher Order



The equation describes the oscillation of the 
longitudinal component zS  at the parameterized tune 

dependent on zxsrfe Sh ,,,,,,  . Since the parameters 

eh  ,, are very small, we can transfer the terms 

responsible for parametric excitation to the right side of 
equation: 
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(5) 
To solve it we use the asymptotic methods in the theory 

of nonlinear oscillations of Bogoliubov and Mitropolsky 
[3], which works well for the case of 1, xzS  and 

1yS . In first approach, the solution is sought in the 

form of: 
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In case of resonance it one of the conditions is met 
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where 


M  is an operator of averaging over  . Each of 1-

5 is performed correspondently at: 
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We see the resonance conditions are satisfied for two 
cases: srf n  2 (in 1 and 5) or/and srf n    (in 

2-4). In the case srf n  2  the longitudinal 

component zS  grows up proportionally sd
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RESONANT BUILD-UP ANALYSIS  
Now we analyse the influence of various factors 

entering into the general equations system of spin 
oscillation (3). In order to detect the EDM signal we 
should fulfil the conditions for the resonant build-up of 

zS component growth. 

Fundamental Features of Spin Oscillation 
Equation 

From this point of view we have investigated 
numerically the parametric dependence of equation 
system (3) on y , x , ef ,  in resonance and non-

resonance )1(   sRF . In results we have got 

versus seef  / : the period of envelope decreases 

with increasing the factor ef  in different ways depending 

on y , x ; 

versus sy  /  and ex h  / : the period of 

envelope is proportional to xy  /1  and maxzS ~ 

xy    

versus xy   : due to symmetry of  the equation 

system (3) relatively of X and Y planes at xy   it is no 

resonant build-up growth of amplitude and let us call it a 
fundamental feature for later reference (*);  

versus  : the period of envelope is proportional to 
)1/(~ resres TTT    and maxzS  )0(max tS z . 

Difference between RFE and RFB Deflectors 
A very important feature of symmetry of the equations 

system (3) gives a clear explanation of difference in the 
effects of RFE and RFB deflectors on the spin. In case of 
RFE deflector esxy h  //   and we can 

always create the resonant condition for the build-up of 

zS  amplitude, but for RFB deflector we can’t create the 

resonant condition, since 0 RFBRFBxy  . 

Thus, in case of both deflectors switched on the resonant 
growth completely coincides with case of RFE deflector 
alone. 

Factor of Resonance Detuning 
Figure 1 shows results of the numerical integration of 

equation system (4) for protons with the energy 100 MeV: 
the zS component versus the turn number for the resonant 
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srf n    and the non-resonant srf n   cases. In 

both cases, the character of dependence is the same. But 
in the resonant case, the final value of zS leads to the 

maximum 1zS during a very long time ~100 years, and 

in the off-resonance zS  is limited by a very small value 

reached much faster. 

 
Figure 1: Sz  vs turns number for the resonant (red) and 
non-resonant (green) cases 
 
The figure 2 shows the maxzS  dependence on the 

resonance detuning 1/  sRF  . You can see that at 

bigger RF detuning than 1110  the maximum possible 

registered signal maxzS  does not exceed 610 . 

 
Figure 2: maxzS   vs the resonance detuning together with 

the measurement accuracy limit 
 
Next, we tested the effect of frequency deviation of the 
spin precession from the RF tune )1(   RFs . Figure 

3 shows for comparison the build-up process for two 
cases: fixed and random RF detuning. You can see that in 
the first case the process is periodic, and in the second 
case it increases and then remains almost constant. 

 
 
Figure 3: The zS  build-up process for two cases: fixed 

(red) and random (green) RF detuning 

The same has been modeled for the case of random 
deviation of the spin tune, for instance due to random 
changes in the energy of a particle. It is appeared the 
build-up process for the random tune spin deviation 
coincides with the ideal case, when we have no spin tune 

spread and observe the resonant build-up with 0 . 

Dependence of Spin Build-up Process on 
Longitudinal Oscillation 
To simplify the analysis of the longitudinal oscillation 
contribution in the build-up process with 

)sin()(   lm  we take 0  and (5) is reduced 

into: 

 )sin(sin2
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or using the representation of trigonometric functions 
with the trigonometric argument in terms of the Bessel 
functions, we can write the right side (9): 
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We see that in addition to the fundamental mode two 
neighbor modes appear at a distance of frequency 

lRF   . 

CONCLUSION  
We have shown that for the resonant build-up of 

transverse spin component we need as minimum an 
electrical RF deflector with extremely high frequency 
stability relative to the frequency of spin precession. 
Having studied the properties of the spin equations, we 
have shown that the vertical magnetic RF deflector alone 
is not able to build up the transverse component of the 
spin due to spin interaction with the magnetic field only. 
We have studied the fundamental difference between a 
random perturbation of the spin tune and a random 
perturbation of the RF tune in the deflector.   
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