Author: Cao, J.S.
Paper Title Page
MOPME055 Design and Construction of a Remote Control for the CADS Digital Power Supplies 498
 
  • Y.Y. Du, J.S. Cao, Q. Ye
    IHEP, Beijing, People's Republic of China
 
  A remote controlled power supply system includes a data processing system and control at least 76 power supplies, which is designed for the China Accelerator Driven Subcritical system (C-ADS) power supplies system. The system Construction in the mode of integrated control with 1U chassis board, and the hardware parts control core based on Field Programmable Gate Array (FPGA). The software part adopts Experimental Physics and Industrial Control System (EPICS) platform with database and TCP/IP protocol, the administrators can acquire the working parameter through a remote control equipment and control the power supply at the remote site.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-MOPME055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOAA01 Beam Trip Analysis by Bunch-by-bunch BPM System in BEPCⅡ 2779
SUSPSNE067   use link to see paper's listing under its alternate paper code  
 
  • Q.Y. Deng, J.S. Cao, J. Yue
    IHEP, Beijing, People's Republic of China
 
  A new bunch-by-bunch beam position measurement prototype system has been designed and built to monitor and analysis beam trip in the BEPCⅡ(Beijing Electron-Positron ColliderⅡ) machine. The fast ADC and programmable FPGA can obtain the beam information bunch-by-bunch, so we can analyze base on both time domain and frequency domain. In this paper we will presentation the system architecture and discuss some beam trip analysis result, such as beam instability, tune drifting, RF breakdown, and so on.  
slides icon Slides THOAA01 [0.999 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THOAA01  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO110 High Availability Software Architecture of C-ADS Control System 3153
SUSPSNE083   use link to see paper's listing under its alternate paper code  
 
  • P.F. Wang, J.S. Cao, Q. Ye
    IHEP, Beijing, People's Republic of China
 
  The control system of Accelerator Driven Sub-critical System (ADS) should be a high-availability (HA) system with fault tolerant architecture, due to the potential utilizations of the ADS, such as separating and transmuting irradiated nuclear fuel. This paper discusses the HA software architecture of ADS control system which mainly composed by four softwares, which are 1) low floor communication and control system–-EPICS [1], 2) hierarchal programming framework of the accelerator–XAL [2], 3) monitoring and operating large scale control systems–Control System Studio (CSS) [1], 4) data storage and service infrastructure–HA database and server cluster. In addition, the recent development of ADS control system is briefly introduced in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPME137 Preliminary Study of Non-invasive Beam Profile Measurements for Proton Beams 3569
 
  • H. He, J.S. Cao, Q.Y. Deng, J.H. Junhui, Y.F. Sui, J. Yue, Y. Zhao
    IHEP, Beijing, People's Republic of China
  • J. Chen
    NSRRC, Hsinchu, Taiwan
 
  Funding: This work was supported by NSFC under grant NO.11305186 and No.11205172
Two non-invasive beam profile measurement methods were developed for China high intensity proton beams projects, including CSNS and ADS. The first consists in an IPM (ionization beam profile monitor) system which detect the ionized products from a collision of the beam particle with residual gas atoms or molecules present in the vacuum pipe. The second is an electron beam scanner which using a low energy electron beam instead of a metal wire to sweep through the beam. The deflection of electron beam by the collective field of the high intensity beam is measured. The charge density in the high intensity beam can be restored under certain conditions or estimated by various mathematical techniques. Here we present the design parameters of the IPM system, the signal intensity of ionization products, optimization of the electric field, machine designs of electrode, tracking of the ionization products and so on. The principle of the electron beam scanner and the test results which is based on a commercial electron gun from Kimball Physics are also introduced in details.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPME137  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)