Author: Batygin, Y.K.
Paper Title Page
TUOAB03 Nonlinear Optics for Suppression of Halo Formation in Space Charge Dominated Beams 953
 
  • Y.K. Batygin, A. Scheinker
    LANL, Los Alamos, New Mexico, USA
  • C. Li
    IMP, Lanzhou, People's Republic of China
 
  Traditional accelerator designs utilize linear focusing elements (quadrupoles, solenoids) to provide stable particle motion. High – intensity rms - matched non - uniform beams are intrinsically mismatched with linear focusing structure. It results in space charge induced beam emittance growth and halo formation, which can be suppressed in a quadrupole channel with higher-order multipole field components. In this paper, overview of FODO quadrupole channels with arbitrary multipoles is given. Effective averaged potential is presented for the structure with periodic combination of multipole lenses and quadrupoles. Density of matched beam avoiding emittance growth and halo formation is derived. Performed analysis allows matching of realistic beam with the internal structure of the focusing field. Beam dynamics studies with suppressed halo are presented and discussed.  
slides icon Slides TUOAB03 [3.404 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-TUOAB03  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO094 Large Scale Particle Tracking and the Application in the Simulation of the RFQ Accelerator 3107
 
  • L. Du, Q.Z. Xing
    TUB, Beijing, People's Republic of China
  • Y.K. Batygin
    LANL, Los Alamos, New Mexico, USA
  • Y. He, L. Yang
    IMP, Lanzhou, People's Republic of China
  • J. Xu, R. Zhao
    IS, Beijing, People's Republic of China
 
  Large scale particle tracking is important for the design and optimization of the Radio-frequency Quadrupole (RFQ) accelerator. In this paper, we present RFQ simulation results of new parallel software named LOCUS3D, which is developed at Institute of Software, Chinese Academy of Sciences. It is based on Particle-In-Cell method and calculates three-dimensional space charge field by an efficient parallel fast Fourier transform method. A RFQ accelerator in Tsinghua University is simulated by tracking 100 million macro particles. This RFQ is designed to accelerate protons from 50 keV to 3 MeV, with peak beam current of 50 mA. As large number of particles been simulated, more accurate and detailed information have been obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO097 Space-charge Neutralization of 750-keV H Beam at LANSCE 3116
 
  • Y.K. Batygin, C. Pillai, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
 
  The injector part of Los Alamos Neutron Science Center (LANSCE) includes 750-keV H beam transport located upstream of the Drift Tube Linac. Space charge effects play an important role in the beam transport therein. A series of experiments were performed to determine the level of beam space charge neutralization, and time required for neutralization. Measurements performed at different places along the structure indicate significant variation of neutralized space charge beam dynamics along the beamline. Results of measurements were compared with numerical simulations using macroparticle method and envelope equations to determine values of the effective beam current after neutralization, and effective beam emittance, required for beam tuning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPRO098 Realistic Modeling of 4-Rod RFQs with CST Studio 3119
 
  • S.S. Kurennoy, Y.K. Batygin, E.R. Olivas, L. Rybarcyk
    LANL, Los Alamos, New Mexico, USA
 
  RFQ accelerators are usually designed and modeled with standard codes based on electrostatic field approximations. There are recent examples when this approach fails to predict the RFQ performance accurately: for 4-rod RFQs 3D effects near the vane ends can noticeably influence the beam dynamics. The same applies to any RFQ where the quadrupole symmetry is broken, e.g., 4-vane RFQ with windows. We analyzed two 201.25-MHz 4-rod RFQs – one recently commissioned at FNAL and a new design for LANL – using 3D modeling with CST Studio. In both cases the manufacturer CAD RFQ model was imported into CST. The EM analysis with MicroWave Studio (MWS) was followed by beam dynamics modeling with Particle Studio (PS). For the LANL RFQ with duty factor up to 15%, a thermal-stress analysis with ANSYS was also performed. The simulation results for FNAL RFQ helped our Fermilab colleagues fix the low output beam energy. The LANL RFQ design was modified after CST simulations indicated insufficient tuning range and incorrect output energy; the modified version satisfies the design requirements. Our PS results were confirmed by multi-particle beam-dynamics codes that used the MWS-calculated RF fields.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2014-THPRO098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)