Author: Tischer, M.
Paper Title Page
TUZA02 sFLASH - Present Status and Commissioning Results 923
 
  • V. Miltchev, S. Ackermann, A. Azima, J. Bödewadt, F. Curbis, M. Drescher, E. Hass, Th. Maltezopoulos, M. Mittenzwey, J. Rönsch-Schulenburg, J. Roßbach, R. Tarkeshian
    Uni HH, Hamburg, Germany
  • H. Delsim-Hashemi, K. Honkavaara, T. Laarmann, H. Schlarb, S. Schreiber, M. Tischer
    DESY, Hamburg, Germany
  • R. Ischebeck
    PSI, Villigen, Switzerland
  • S. Khan
    DELTA, Dortmund, Germany
 
  The free-electron laser in Hamburg (FLASH) was previously being operated in the self-amplified spontaneous emission (SASE) mode, producing photons in the XUV wavelength range. Due to the start-up from noise the SASE-radiation consists of a number of uncorrelated modes, which results in a reduced coherence. One option to simultaneously improve both the coherence and the synchronisation between the FEL-pulse and an external laser is to operate FLASH as an amplifier of a seed produced using high harmonics generation (HHG). An experimental set-up - sFLASH, has been installed to test this concept for the wavelengths below 40 nm. The sFLASH installation took place during the planed FLASH shutdown in the winter of 2009/2010. The technical commissioning, which began in the spring of 2010, has been followed by seeded-FEL commissioning, FEL-characterisation and pilot experiments. In this contribution the present status and the sFLASH commissioning results will be discussed.  
slides icon Slides TUZA02 [4.125 MB]  
 
THPC156 Performance of the PETRA III APPLE II Undulator 3254
 
  • J. Bahrdt, W. Frentrup, A. Gaupp, M. Scheer
    HZB, Berlin, Germany
  • K. Balewski, J. Keil, A. Schöps, M. Tischer
    DESY, Hamburg, Germany
 
  A 5m-long APPLE II undulator has been built in collaboration between Helmholtz-Zentrum Berlin and DESY Hamburg. Magnetic field measurements after the final shimming in the laboratory are presented. The device has been installed in the storage ring and machine studies have been performed. The tune shifts in the elliptical and the inclined mode are in agreement with predictions from theory. The dynamic field integrals have successfully been minimized in the storage ring with so-called L-shims (rectangular iron sheets) which are placed at the undulator center at the magnet edges.