Author: Krafft, G.A.
Paper Title Page
MOPS091 Study of Electron Cloud for MEIC 817
 
  • S. Ahmed, J.D. Dolph, G.A. Krafft, T. Satogata, B.C. Yunn
    JLAB, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
The Medium Energy Electron Ion Collider (MEIC) at Jefferson Lab has been envisioned as a future high energy particle accelerator beyond the 12 GeV upgrade of the existing Continuous Electron Beam Accelerator Facility (CEBAF). Synchrotron radiation from the closely spaced proton bunches in MEIC can generate photoelectrons inside the vacuum chamber and cause secondary emission due to multipacting in the presence of beam's electric field. This phenomenon can lead to fast build up of electron density, known as electron cloud effect – resulting into beam instability coupled to multi-bunches in addition to a single bunch. For MEIC, the estimated threshold value of the electron-cloud density is approximately 5 x 1012 m-3. In this paper, we would like to report the self-consistent simulation studies of electron cloud formation for MEIC. The code has been benchmarked against the published data of electron cloud effects observed in LHC. Our first simulations predict increase of electron clouds with the increase of repetition rate. The detailed simulations are under progress and will be reported.
 
 
WEPC047 Crab Crossing Schemes and Studies for Electron Ion Collider 2115
 
  • S. Ahmed, S.U. De Silva, Y.S. Derbenev, G.A. Krafft, V.S. Morozov, B.C. Yunn, Y. Zhang
    JLAB, Newport News, Virginia, USA
  • A. Castilla, J.R. Delayen
    ODU, Norfolk, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Medium Energy Electron Ion Collider (MEIC) at JLab has been envisioned as future high energy particle accelerator beyond 12 GeV upgrade of CEBAF. Crab crossing of colliding electron and ion beams is essential for accommodating high bunch repetition frequency in the conceptual design of MEIC. The scheme eliminates parasitic beam-beam interactions and avoids luminosity reduction by restoring head-on collisions at interaction points. This requires the separation of two beams quickly to avoid parasitic collisions and the minimization of synchrotron-betatron resonance near IP which can be fulfilled by employing the crab crossing concept first proposed by R. Palmer. Let us call this original scheme as transverse crabbing for the sake of comparison with dispersive crabbing which employs the existing accelerating/bunching RF cavities and dispersion function in the section where the cavity is installed as originally proposed by G. Jackson. In this paper, we report the beam transport and optics for both transverse and dispersive crabbing schemes followed by basic beam dynamics. Moreover, alignment and stability calculations together with synchro-betatron beam dynamics will be discussed.
 
 
THOBA03 Dual AC Dipole Excitation for the Measurement of Magnetic Multipole Strength from Beam Position Monitor Data* 2865
 
  • M. Spata, G.A. Krafft
    JLAB, Newport News, Virginia, USA
 
  Funding: Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
An experiment was conducted at Jefferson Lab's Continuous Electron Beam Accelerator Facility to develop a technique for characterizing the nonlinear fields of the beam transport system. Two air-core dipole magnets were simultaneously driven at two different frequencies to provide a time-dependent transverse modulation of the electron beam. Fourier decomposition of beam position monitor data was then used to measure the amplitude of these frequencies at different positions along the beamline. For a purely linear transport system one expects to find solely the frequencies that were applied to the dipoles with amplitudes that depend on the phase advance of the lattice. In the presence of nonlinear fields one expects to also find harmonics of the driving frequencies that depend on the order of the nonlinearity. The technique was calibrated using one of the sextupole magnets in a CEBAF beamline and then applied to a dipole to measure the sextupole and octupole strength of the magnet. A comparison is made between the beam-based measurements, results from TOSCA and data from our Magnet Measurement Facility.
 
slides icon Slides THOBA03 [6.193 MB]  
 
THPS009 Coherent Electron Cooling Demonstration Experiment 3442
 
  • V. Litvinenko, S.A. Belomestnykh, I. Ben-Zvi, J. Bengtsson, A.V. Fedotov, Y. Hao, D. Kayran, G.J. Mahler, W. Meng, T. Rao, T. Roser, B. Sheehy, R. Than, J.E. Tuozzolo, G. Wang, V. Yakimenko
    BNL, Upton, Long Island, New York, USA
  • G.I. Bell, D.L. Bruhwiler, V.H. Ranjbar, B.T. Schwartz
    Tech-X, Boulder, Colorado, USA
  • A. Hutton, G.A. Krafft, M. Poelker, R.A. Rimmer
    JLAB, Newport News, Virginia, USA
  • M.A. Kholopov, P. Vobly
    BINP SB RAS, Novosibirsk, Russia
 
  Coherent electron cooling (CEC) is considered to be on of potential candidates capable of cooling high-energy, high-intensity hadron beams to very small emittances. It also has a potential to significantly boost luminosity of high-energy hadron-hadron and electron-hadron colliders. In a CEC system, a perturbation of the electron density caused by a hadron is amplified and fed back to the hadrons to reduce the energy spread and the emittance of the beam. Following the funding decision by DoE office of Nuclear Physics, we are designing and building coherent electron cooler for a proof-of-principle experiment at RHIC to cool 40 GeV heavy ion beam. In this paper, we describe the layout of the CeC installed into IP2 interaction region at RHIC. We present the design of the CeC cooler and results of preliminary simulations.