WEOAMH  —  Circular Colliders   (26-May-10   09:30—10:30)

Chair: H. Koiso, KEK, Ibaraki

Paper Title Page
WEOAMH01 Beam Tests of a Clearing Electrode for Electron Cloud Mitigation at KEKB Positron Ring 2369
 
  • Y. Suetsugu, H. Fukuma, K. Shibata
    KEK, Ibaraki
  • M.T.F. Pivi, L. Wang
    SLAC, Menlo Park, California
 
 

In order to mitigate the electron cloud instability (ECI) in a positron ring, an electron clearing electrode with a very thin structure has been developed. The electrode has been tested with an intense positron beam of the KEKB B-factory using a test chamber. A drastic reduction in the electron density around the beam was demonstrated in a dipole magnetic field (0.78 T). The clearing electrode was then applied to the actual copper beam pipe (94 mm in diameter) with antechambers for wiggler magnets of KEKB. The feed-through was revised to improve reliability, and the length was modified to fit a real magnet. The input power into the electrode was estimated to be approximately 80 W/m. The clear reduction in the electron density was also observed by applying a voltage of +500 V to the electrode. The design of clearing electrodes has now reached a high reliability and it is suitable for accelerator applications.

 

slides icon

Slides

 
WEOAMH02 Recent Progress of KEKB 2372
 
  • Y. Funakoshi, T. Abe, K. Akai, Y. Cai, K. Ebihara, K. Egawa, A. Enomoto, J.W. Flanagan, H. Fukuma, K. Furukawa, T. Furuya, J. Haba, T. Ieiri, N. Iida, H. Ikeda, T. Ishibashi, M. Iwasaki, T. Kageyama, S. Kamada, T. Kamitani, S. Kato, M. Kikuchi, E. Kikutani, H. Koiso, M. Masuzawa, T. Mimashi, T. Miura, A. Morita, T.T. Nakamura, K. Nakanishi, M. Nishiwaki, Y. Ogawa, K. Ohmi, Y. Ohnishi, N. Ohuchi, K. Oide, T. Oki, M. Ono, M. Satoh, Y. Seimiya, K. Shibata, M. Suetake, Y. Suetsugu, T. Sugimura, Y. Susaki, T. Suwada, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, S. Uehara, S. Uno, Y. Yamamoto, Y. Yano, K. Yokoyama, M. Yoshida, S.I. Yoshimoto, D.M. Zhou, Z.G. Zong
    KEK, Ibaraki
 
 

KEKB is an e-/e+ collider for the study of B physics and is also used for machine studies for future machines. The peak luminosity of KEKB, which is the world-highest value, has been still increasing. This report summarizes recent progress at KEKB.

 

slides icon

Slides

 
WEOAMH03 Low Secondary Electron Yield Carbon Coatings for Electron-cloud Mitigation in Modern Particle Accelerators 2375
 
  • C. Yin Vallgren, A. Ashraf, S. Calatroni, P. Chiggiato, P. Costa Pinto, H.P. Marques, H. Neupert, M. Taborelli, W. Vollenberg, I. Wevers, K. Yaqub
    CERN, Geneva
 
 

Electron-cloud is one of the main limitations for particle accelerators with positively charged beams of high intensity and short bunch spacing, as SPS at CERN. The Secondary Electron Yield (SEY) of the inner surface of the vacuum chamber is the main parameter governing the phenomenon. The effect could be eliminated by coating the magnets vacuum chambers with a material of low SEY, which does not require bake-out and is robust against air exposure. For such a purpose amorphous carbon coatings were produced by magnetron sputtering of graphite targets. They exhibit maximum SEY between 0.9 and 1.1 after air transfer to the measuring instrument. After 1 month air exposure the SEY rises to values between 1.1 and 1.4. Storage under nitrogen or by packaging in Al foil makes this increase negligible. The coatings have a similar XPS C1s spectrum for a large set of deposition parameters and exhibit an enlarged line-width compared to pure graphite. The static outgassing without bake-out depends on deposition parameters and is in a range from 1 to 10 times higher than that of stainless steel. Instead, electron stimulated outgassing is lower than for stainless steel and is dominated by CO.

 

slides icon

Slides