Recent progress of KEKB

Y. Funakoshi for the KEKB commissioning group

Finally two crab cavities were installed in KEKB one for each ring in January 2007

HER (e-, 8 GeV)

LER (e+, 3.5 GeV)

···..after 13 years' R&D from 1994

Machine parameters

Date	Nov.15 2006 before crab		Jun. 17 2009 with crab		
	LER	HER	LER	HER	
Current	1.65	1.33	1.64	1.19	A
Bunches	1389		1584		
Bunch current	1.19	0.96	1.03	0.750	mA
spacing	2.10		1.84		mA
emittance ϵ_x	18	24	18	24	nm
βx [*]	59	56	120	120	cm
β _y *	6.5	5.9	5.9	5.9	mm
σ _x @IP	103	107	147	170	μm
σ _y @IP	1.8	1.8	0.94	0.94	μm
Vx	45.505	43.534	45.506	44.511	
Vy	44.509	41.565	43.561	41.585	
Vs	-0.0246	-0.0226	-0.0246	-0.0209	
beam-beam ξ_x	0.117	0.070	0.127	0.102	
beam-beam ξ_y	0.108	0.058	0.129	0.090	
Luminosity	17.6		21.08		10 ³³ cm ⁻² s ⁻¹

Tuning with skew-sextupole magnets

Chromaticity of x-y coupling at IP

- Ohmi et al. showed that the linear chromaticity of x-y coupling parameters at IP could degrade the luminosity, if the residual values, which depend on machine errors, are large.
- To control the chromaticity, skew sextupole magnets were installed during winter shutdown 2009.
- The skew sextuples are very effective to increase the luminosity at KEKB.
- The gain of the luminosity by these magnets is ~15%.

D. Zhou, K. Ohmi, Y. Seimiya,

Figure 8: Scan of first order chromaticity of coupling parameters at IP (Top left: $\partial r_{1N}^*/\partial \delta$, Top right: $\partial r_{2N}^*/\partial \delta$, Bottom left: $\partial r_{3N}^*/\partial \delta$, Bottom right: $\partial r_{4N}^*/\partial \delta$)

$$\begin{pmatrix} r_{1N}^{*} & r_{2N}^{*} \\ r_{3N}^{*} & r_{4N}^{*} \end{pmatrix} = \begin{pmatrix} R_{1}^{*}\sqrt{\beta_{x}^{*}/\beta_{y}^{*}} & R_{2}^{*}/\sqrt{\beta_{x}^{*}\beta_{y}^{*}} \\ R_{3}^{*}\sqrt{\beta_{x}^{*}\beta_{y}^{*}} & R_{4}^{*}\sqrt{\beta_{y}^{*}/\beta_{x}^{*}} \end{pmatrix}$$

Definition of x-y coupling parameters (SAD notation)

$$\begin{pmatrix} u \\ p_{u} \\ v \\ p_{v} \end{pmatrix} = T \begin{pmatrix} x \\ p_{x} \\ y \\ p_{y} \end{pmatrix} \qquad T(s) = \begin{pmatrix} \mu I & SR'S \\ R & \mu I \end{pmatrix} = \begin{pmatrix} \mu & 0 & -R_{4} & R_{2} \\ 0 & \mu & R_{3} & -R_{1} \\ R_{1} & R_{2} & \mu & 0 \\ R_{3} & R_{4} & 0 & \mu \end{pmatrix}$$

$$\int S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad \mu^{2} + \det R = 1$$
Normal (decoupled) coordinate

Usual coordinate

Examples of scan of chromatic x-y coupling at IP

Measurement on chromaticity of x-y coupling at IP (HER)

blue: without skew-sextuples red: with skew-sextuples (after luminosity tuning)

dotted line: model optics without machine errors

Y. Ohnishi

Effectiveness of skew-sextupole magnets (crab on)

constant beam-beam parameter: ξ_{v} (HER) = 0.08 (I_{LER}/I_{HER} =8/5) 24 <u>s</u>imulation (β^{*} = 0.8-m) 22 Specific Luminosity / bunch 20 [10³⁰ cm⁻² s⁻¹ mA⁻²] simulation $\langle \beta_{v}^{*} = 1.5 \text{ m} \rangle$ 18 16 14 No skew-sextupoles $\beta = 1.5m$ 12 With skew-sextupoles $\beta^* = 1$ 10 8 0.2 0.4 0.6 0 0.8 I_{bunch}(e+) x I_{bunch}(e-) [mA²]

Effectiveness of skew-sextupole magnets (crab off)

Effect of the crab cavities on the luminosity and the beambeam parameter

Specific luminosity (crab on/off)

Luminosity improvement by crab cavities is about 20%. Geometrical loss due to the crossing angle is about 11%.

Beam-beam parameter (crab on/off)

	Crab on	Crab off
RL	0.828	0.763
R _{ξy} (HER)	1.15	0.993

Calculation of beam-beam parameter

Reduction factor for beam-beam parameter

$$\xi_{y} = R_{\xi_{y}}\xi_{y0} \qquad \xi_{y0} = \frac{r_{e}}{2\pi\gamma}\frac{\beta_{y}^{*}N}{\sigma_{y}^{*}(\sigma_{x}^{*}+\sigma_{y}^{*})}$$

- 2 sources of reduction
 - hourglass effect and finite crossing angle

$$R_{\xi_{y}} = \int_{-\infty}^{\infty} \sqrt{1 + \left(\frac{z/2}{\beta_{y}^{*}}\right)^{2}} f_{y}(x, \sigma_{x}, \sigma_{y}) \rho(z) dz$$

$$f_{y}(x,\sigma_{x},\sigma_{y}) = \frac{k}{k-1} \left[\left(1 - e^{-\frac{x^{2}}{2\sigma_{x}^{2}}} \frac{1}{k}\right) + \frac{i\sqrt{\pi}x}{\sigma_{x}\sqrt{2(1-k^{2})}} \left\{ w\left(\frac{x}{\sigma_{x}\sqrt{2(1-k^{2})}}\right) - e^{-\frac{x^{2}}{2\sigma_{x}^{2}}} w\left(\frac{kx}{\sigma_{x}\sqrt{2(1-k^{2})}}\right) \right\} \right]$$

Montague's factor
$$k = \frac{\sigma_{y}}{\sigma_{x}}$$

montague s factor

$$\rho(z) = \frac{1}{\sqrt{2\pi}\sigma_z} e^{-\frac{z^2}{2\sigma_z^2}}$$

Calculation of beam-beam parameter [cont'd]

• Reduction factor for luminosity

$$R_{L} \equiv \frac{L}{L_{0}} = \sqrt{\frac{2}{\pi}} a e^{b} K_{0}(b)$$
$$a = \frac{\beta_{y}^{*}}{\sqrt{2}\sigma_{z}}, \quad b = a^{2} \left[1 + \left(\frac{\sigma_{z}}{\sigma_{x}^{*}} \tan \phi\right)^{2} \right]$$

- Luminosity

$$L = \frac{1}{4\pi} \frac{N^+ N^-}{\sigma_x^* \sigma_y^*} f_{col} R_L$$

– We use calculated values for ${\sigma_{\!x}}^*$ and calculate ${\sigma_{\!y}}^*$ and ξ_{y0} from observed luminosity.

Beam-beam parameter (simulation)

• Crab Crossing can boost the beam-beam parameter higher than 0.15 ! (K. Ohmi)

Summary of crab cavity operation

- The crab cavities at KEKB did work and brought the luminosity increase by ~20%.
- The highest luminosity with crab is 2.1 x 10³⁴ cm⁻²s⁻¹.
 - Skew-sextupoles
 - Increase of HER beam current by solving the physical aperture problem
- There still exists a large discrepancy between the luminosity achieved and the beam-beam simulation.
 - The simulation predicted that the luminosity would be doubled.
 - Side effects of large tuning knobs to compensate the machine errors?
 - Horizontal dipole oscillation of the beams in collision?

e+/e- simultaneous injection (fast beam mode switching)

- e+/e-/PF(e-) simultaneous injection was finally realized in April 2009.
- e+/e-/PF(e-) simultaneous injection
 - Switch beam mode fast (in principle pulse-to-pulse for 50Hz linac pulses)
 - Magnet settings in the linac are unchanged among the modes. We use some pulse steering/bending magnets.
 - Many timing signals and klystron phases are switched pulse-to-pulse.
- Benefits of the simultaneous injection
 - The beam condition became more stable.
 - Much faster beam tuning became possible.
 - The luminosity decrease during the PF injection and the PF machine study can be avoided.

Fast beam mode switch scheme is strongly required.

The block pulses show beam gate timings.

KEKB operation in 2010

- The KEKB operation was resumed on May 13th.
- The KEKB operation will be terminated at the end of June.
 Fine grained scan around Y(5S) and
 - Physics operation:
 energy scan
 (3 weeks)
 - Machine study:(2 weeks)

Machine studies

- SuperKEKB
 - Vacuum R&D
 - Counter-measures for ECI (pervious talk by Y. Suetsugu)
 - Movable mask, radiation from vacuum chamber etc.
 - RF system
 - High power operation of klystron
 - SCC reverse phase operation
 - Beam monitor system
 - Bunch-by-bunch feedback system
 - BPM signal detection circuit
 - Beam transport
 - Beam abort window

Machine studies [cont'd]

- SuperKEKB (cont'd)
 - Beam behavior, beam dynamics
 - Stability of beam orbit, effects of electron clouds
 - Physics Detector
 - Background study
- KEKB performance
 - e-/e+/PF simultaneous injection
 - Side effect of large tuning knobs
 - effect of compensation solenoid
 - Measurement of x-y coupling at IP and its chromaticity
 - Horizontal oscillation in physics run
- Others
 - Study for LHC crab cavity, Positron target for ILC

Summary and future prospects

- A new luminosity record was made by using skew-sextupole magnets.
- The crab cavities did work and brought the luminosity improvement by about 20%.
- This improvement is still lower than the beam-beam simulation.
- e+/e- simultaneous injection was realized.
- KEKB/Belle has accumulated the integrated luminosity of 1000 fb⁻¹.
- KEKB is being used also as an R&D machine.
- The KEKB operation will be terminated at the end of coming June. We plan to start the construction of SuperKEKB.
- The design luminosity of SuperKEKB is 8 x 10³⁵ cm⁻²s⁻¹ (x40 of KEKB). (Talk by M. Masuzawa: FRXBMH01)