A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Shintake, T.

Paper Title Page
MOPE004 Development and Construction Status of the Beam Diagnostic System for XFEL/SPring-8 957
 
  • S. Matsubara, A. Higashiya, H. Maesaka, T. Ohshima, Y. Otake, T. Shintake, H. Tanaka, K. Togawa, M. Yabashi
    RIKEN/SPring-8, Hyogo
  • H. Ego, S. Inoue, K. Tamasaku, T. Togashi, H. Tomizawa, K. Yanagida
    JASRI/SPring-8, Hyogo-ken
 
 

We report the design, performance, and installation of the beam diagnostic system of XFEL/SPring-8. The electron beam bunches of an XFEL accelerator are compressed from 1 ns to 30 fs by bunch compressors without emittance growth and peak-current fluctuation which directly cause SASE fluctuation. To maintain the stable bunch compression process, the accelerator requires rf caivty beam position monitors (BPM) with 100 nm resolution, OTR screen monitors (SCM) with a few micro-meter resolution, fast beam current monitors (CT) and temporal structure measurement systems with resolution under picosecond. The performance of the developed monitor instruments, such as the BPM, the SCM, and the CT, was tested at the SCSS test accelerator and satisfied with the requirements. To measure the temporal structure of the electron bunch, three type measurement systems, which are a streak camera, an EO sampling measurement, and a transverse deflecting cavity with a resolution of few-tens femtosecond, are being prepared. The streak camera and EO sampling shows the resolution of sub-picosecond. The installation of these beam diagnostic systems is going on smoothly.

 
TUXRA02 Status Report on Japanese XFEL Construction Project at SPring-8 1285
 
  • T. Shintake
    RIKEN/SPring-8, Hyogo
 
 

SASE based X-ray free-electron laser is now under construction at the SPring-8 site. This project is aiming at realization of SASE FEL of 1 angstrom initially and approaches to seeded XFEL in the second stage. For this future extension, a very unique system was adopted, composed of a low emittance SHB-based injector with CeB6 cathode thermionic gun, normal conducting high gradient C-band acceleration system and high performance in-vacuum undulators. This presentation will provide a comprehensive project review and recent project progress.

 

slides icon

Slides

 
TUPEC007 Construction of Injector System for SPring-8 X-FEL 1722
 
  • H. Hanaki, T. Asaka, H. Ego, H. Kimura, T. Kobayashi, S. Suzuki, M. Yamaga
    JASRI/SPring-8, Hyogo-ken
  • T. Fukui, T. Inagaki, N. Kumagai, Y. Otake, T. Shintake, K. Togawa
    RIKEN/SPring-8, Hyogo
 
 

The injector of the 8 GeV linac generates an electron beam of 1 nC, accelerates it up to 30 MeV, and compresses its bunch length down to 20 ps. Even slight RF instability in its multi-stage bunching section fluctuates the bunch width and the peak current of an electron beam and it accordingly results in unstable laser oscillation in the undulator section. The acceptable instabilities of the RF fields in the cavities, which permit 10% rms variation of the peak beam current, are only about 0.01% rms in amplitude and 120 fs rms in phase according to beam simulation. The long-term RF variations can be compensated by feedback control of the RF amplitude and phase, the short-term or pulse-to-pulse variations, however, have to be reduced as much as possible by improving RF equipment such as amplifiers. Thus we have carefully designed and manufactured the RF cavities, amplifiers and control systems, giving the highest priority to the stabilization of the short-term variations. Components of the injector will be completed by the end of the April 2010, and the injector will be perfected in the summer 2010. We will present the performance of the completed devices in the conference.

 
WEPD059 EMI Noise Suppression in the Klystron Pulse Power Supply for XFEL/SPring-8 3230
 
  • C. Kondo, K. Shirasawa
    JASRI/SPring-8, Hyogo-ken
  • T. Inagaki, T. Sakurai, T. Shintake
    RIKEN/SPring-8, Hyogo
 
 

Low electro-magnetic noise interference (EMI) is required to the klystron modulator power supply for XFEL/SPring-8 project in order to realize the highly stable beam operation with aid of various feedback loops using high-performance beam monitors. The dominant noise source is the thyratron switching noise, associated with its rapid voltage swing of 50 kV maximum. To suppress the noise leakage, special care was taken to the enclosure design of klystron modulator, i.e., using thick steel plates a monocoque enclosure was fabricated, in which all of the high power circuits was installed. The rapid image current flows on the inner surface, thus EMI was minimized. A special co-axial feed-though was developed for filtering the conducted noise on power line for thyratron and klystron heaters. In this presentation, we will report the details of the devices and the results of the noise suppression.

 
WEPD080 Compact Klystron Modulator for XFEL/SPring-8 3287
 
  • T. Shintake, T. Inagaki, C. Kondo, T. Sakurai, K. Shirasawa
    RIKEN/SPring-8, Hyogo
 
 

XFEL/SPring-8 will use 72 line type modulator pulse-power supply for 66 C-band klystrons, 4 S-band, one L-band and pulsed 500 kV electron gun. In order to make the size smaller to fit the space available in the high gradient C-band accelerator, we have developed all in one box design of modulator. Using metal monocok design, filled with oil, it becomes possible to fit all circuitry: PFN, thyratron, pulse transformer, klyston socket, and protection circuit into a metal box of W 1m x L 1.7m x H 1m, which provides strong support for massive klystron and solenoide with lead shield and functions as superior EM shiled. We developed high precission HV charger for PFN, which has stability better than 100 ppm.pp. Modulator and PFN chargers are under mass prodution.

 
THPEA009 Construction Status of C-band Main Accelerator for XFEL/SPring-8 3691
 
  • T. Inagaki, N. Adumi, T. Hasegawa, H. Maesaka, S. Matsui, T. Sakurai, T. Shintake
    RIKEN/SPring-8, Hyogo
  • H. Kimura, C. Kondo, K. Shirasawa
    JASRI/SPring-8, Hyogo-ken
 
 

C-band (5712 MHz) accelerator is used as the main accelerator of the XFEL in SPring-8. Since the C-band generates a high accelerator gradient, as high as 35 MV/m, the total length of the 8-GeV accelerator fits within 400 m, including the injector and three bunch compressors. We use 64 C-band rf units, which consists of 128 accelerating structures, 64 rf pulse compressors, 64 klystrons, waveguide components, etc. Mass-production of these high power rf components has been almost completed. Production quality is confirmed by the high power rf test. Installation of the C-band components started in August 2009. So far, about half of the components have been installed on schedule. The accelerating structures are aligned with about 0.1 mm accuracy. By the date of the IPAC'10 conference, we will almost complete the installation. In this presentation, we will report the construction status.

 
THPEA010 High Power RF Test on the Mass-produced C-band RF Components for XFEL/SPring-8. 3694
 
  • T. Sakurai, T. Inagaki, C. Kondo, T. Shintake, K. Shirasawa
    RIKEN/SPring-8, Hyogo
  • S. Suzuki
    JASRI/SPring-8, Hyogo-ken
 
 

We report the high power rf test results of C-band accelerator system for X-ray free electron laser (XFEL) in SPring-8 site. In XFEL main accelerator, 64 C-band systems will be used in total, whose components are under mass production at several industries in Japan. We performed high power RF test with three sets of the mass-produced components in XFEL test bunker. We operate the C-band components with the accelerating gradient, as high as 40 MV/m. We measured the high voltage breakdown rate and the dark current emission.