A   B   C   D   E   F   G   H   I   J   K   L   M   N   O   P   Q   R   S   T   U   V   W   X   Y   Z  

Ko, I.S.

Paper Title Page
MOPE039 Beam Parameter Measurements of fs-THz Linac at PAL 1059
 
  • C.M. Yim, S. Noh
    POSTECH, Pohang, Kyungbuk
  • H.-S. Kang, C. Kim, I.S. Ko
    PAL, Pohang, Kyungbuk
 
 

At Pohang Accelerator Laboratory, a femto-second THz facility was constructed for the experiments using femto-second THz radiation. The fs-THz radiation is generated from 60-MeV electron linac which consists of a photocathode RF gun, two accelerating columns, and two magnetic-chicane bunch compressors. The coherent transition radiation (CTR) is used for THz radiation generation. To generate high intensity THz radiation, the electron bunch length should be smaller than 200 fs. We report THz image obtained using IR-CCD camera and measured beam parameters including bunch length, energy spread, charge, emittance, and transverse beam size.

 
MOPEB068 Nuclear Data Measurements with a Pulsed Neutron Facility based on an Electron Linac 430
 
  • G.N. Kim
    Kyungpook National University, Daegu
  • M.-H. Cho, I.S. Ko, W. Namkung
    POSTECH, Pohang, Kyungbuk
  • H.-S. Kang
    PAL, Pohang, Kyungbuk
  • K.S. Kim, M.W. Lee
    CHEP, Daegu
 
 

We report the activities by using the pulsed neutron facility which consists of an electron linear accelerator, a water-cooled Ta target, and a 12-m time-of-flight path. It can be possible to measure the neutron total cross-sections in the neutron energy range from 0.01 eV to few hundreds eV by using the neutron time-of-flight method. A 6LiZnS(Ag) glass scintillator was used as a neutron detector. The neutron flight path from the water-cooled Ta target to the neutron detector was 12.1 m. The background level was determined by using notch-filters of Co, In, Ta, and Cd sheets. In order to reduce the gamma rays from Bremsstrahlung and those from neutron capture, we employed a neutron-gamma separation system based on their different pulse shapes. The present measurements of several samples (Dy, Nb) are in general agreement with the evaluated data in ENDF/B-VII. The resonance parameters were extracted from the transmission data from the SAMMY fitting and compared with the previous ones. We also report the isomeric yield ratios for isomeric pairs produced from photonuclear reactions by using the bremsstrahlung photons from the 70-MeV electron linac.

 
TUPEC014 Upgraded Photocathode RF Gun at PAL 1740
 
  • J.H. Hong, M.S. Chae, I.S. Ko, S.-I. Moon, Y.W. Parc
    POSTECH, Pohang, Kyungbuk
  • C. Kim, S.J. Park
    PAL, Pohang, Kyungbuk
 
 

A Brookhaven National Laboratory (BNL) type S-band photocathode RF gun is used at Pohang Accelerator Laboratory (PAL) to produce femtosecond tera hertz (fs-THz) radiation. In order to upgrade the fs-THz Facility at PAL, we need to develop the performance of the RF gun. The requirements for new RF gun are following: 1 nC beam charge, 60 Hz repetition frequency and 1 mm mrad normalized rms transverse emittance. A dual feed photocathode RF gun is designed satisfy these requirements. Two additional pumping ports are used to remove the field asymmetry. A large radius and short length of the iris increases the mode separation. The coupling scheme is changed to make the fabrication simpler. The RF gun structure had been modeled using 3D field solver to provide the desired RF parameters and to obtain the field profile. In this paper the new RF gun design and the cold test results will be presented.

 
TUPE038 Simulation Study on Emittance Increase due to RF Asymmetry 2224
 
  • Y.W. Parc
    PAL, Pohang, Kyungbuk
  • M.S. Chae, J.H. Hong, I.S. Ko
    POSTECH, Pohang, Kyungbuk
 
 

Due the field asymmetry in RF gun due the holes in full cell cavity, the emittance of electron beam can be increased. To generate the low emittance electron beam for XFEL, the elimination of the each field components is very important. The RF field can be decomposed as dipole and quadrupole components. The effect on the emittance increase of each component is studied in this presentation by numerical method. The 3D field map is constructed by MATLAB code as input of PARMELA code with each component distribution of the RF field. In this paper the emittance increase of electron beam by the each component of the RF field will be presented.