Keyword: photon
Paper Title Other Keywords Page
MOPMB014 NbTi Thin Film SRF Cavities for Dark Matter Search cavity, target, SRF, cryogenics 96
 
  • G. Marconato
    Università degli Studi di Padova, Padova, Italy
  • D. Alesini, A. D’Elia, D. Di Gioacchino, C. Gatti, C. Ligi, G. Maccarrone, A. Rettaroli, S. Tocci
    LNF-INFN, Frascati, Italy
  • O. Azzolini, R. Caforio, E. Chyhyrynets, D. Fonnesu, D. Ford, V.A. Garcia, G. Keppel, C. Pira, A. Salmaso, F. Stivanello
    INFN/LNL, Legnaro (PD), Italy
  • C. Braggio
    Univ. degli Studi di Padova, Padova, Italy
  • D. D’Agostino, U. Gambardella
    INFN-Salerno, Baronissi, Salerno, Italy
  • S. Posen
    Fermilab, Batavia, Illinois, USA
 
  Funding: Resources from U.S. DOE, Ofce of Science, NQISRC, SQMS contract No DE-AC02-07CH11359. Also from EU’s Horizon 2020 Research and Innovation programme, Grant Agreement No 101004730; INFN CSNV exp. SAMARA
The search for dark matter is now looking at ALPs (axion-like particles) as a very promising candidate to understand our universe. Within this framework, we explore the possibility to use NbTi thin film coatings on Cu resonating cavities to investigate the presence of axions in the range of 35-45 µeV mass by coupling the axion to a very strong magnetic field inside the cavity, causing its conversion to a photon which is subsequently detected. In this work the chemical treatments and DC magnetron sputtering details of the preparation of 9 GHz, 7 GHz, and 3.9 GHz resonant cavities and their quality factor measurements at different applied magnetic fields are presented.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB014  
About • Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 26 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB109 PI Loop Resonance Control for the Dark Photon Experiment at 2 K using a 2.6 GHz SRF cavity cavity, simulation, experiment, SRF 847
 
  • C. Contreras-Martinez, B. Giaccone, O.S. Melnychuk, A.V. Netepenko, Y.M. Pischalnikov, S. Posen, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Two 2.6 GHz cavities are being used for dark photon search at VTS in FNAL. During testing at 2 K the cavities experience frequency detuning caused by microphonics and slow frequency drifts. The experiment requires that the two cavities have the same frequency within 5 Hz. These two cavities are equipped with frequency tuners consisting of three piezo actuators. The piezo actuators are used for fine-fast frequency tuning. A PI loop utilizing the piezos was used to maintain both cavities at the same frequency, and the results are presented.  
poster icon Poster WEPWB109 [1.151 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB109  
About • Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 18 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB133 Testing of the 2.6 GHz SRF Cavity Tuner for the Dark Photon Experiment at 2 K cavity, SRF, experiment, ECR 907
 
  • C. Contreras-Martinez, B. Giaccone, I.V. Gonin, T.N. Khabiboulline, O.S. Melnychuk, Y.M. Pischalnikov, S. Posen, O.V. Pronitchev, J.C. Yun
    Fermilab, Batavia, Illinois, USA
 
  At FNAL two 2.6 GHz SRF cavities are being used to search for dark photons, the experiment can be conducted at 2 K or in a dilution refrigerator. Precise frequency tuning is required for these two cavities so they can be matched in frequency. A cooling capacity constraint on the dilution refrigerator only allows piezo actuators to be part of the design of the 2.6 GHz cavity tuner. The tuner is equipped with three encapsulated piezo that deliver the long- and short-range frequency tuning. Modifications were implemented on the first tuner design due to the low forces on the piezos due to the cavity. Three brass rods with Belleville washers were added to the design to increase the overall force on the piezos. The results at 2 K of testing this tuner with and without the modification will be presented.  
poster icon Poster WEPWB133 [0.829 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB133  
About • Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 04 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)