Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPMB014 | NbTi Thin Film SRF Cavities for Dark Matter Search | cavity, target, SRF, cryogenics | 96 |
|
|||
Funding: Resources from U.S. DOE, Ofce of Science, NQISRC, SQMS contract No DE-AC02-07CH11359. Also from EU’s Horizon 2020 Research and Innovation programme, Grant Agreement No 101004730; INFN CSNV exp. SAMARA The search for dark matter is now looking at ALPs (axion-like particles) as a very promising candidate to understand our universe. Within this framework, we explore the possibility to use NbTi thin film coatings on Cu resonating cavities to investigate the presence of axions in the range of 35-45 µeV mass by coupling the axion to a very strong magnetic field inside the cavity, causing its conversion to a photon which is subsequently detected. In this work the chemical treatments and DC magnetron sputtering details of the preparation of 9 GHz, 7 GHz, and 3.9 GHz resonant cavities and their quality factor measurements at different applied magnetic fields are presented. |
|||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-MOPMB014 | ||
About • | Received ※ 18 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 26 July 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWB109 | PI Loop Resonance Control for the Dark Photon Experiment at 2 K using a 2.6 GHz SRF cavity | cavity, simulation, experiment, SRF | 847 |
|
|||
Two 2.6 GHz cavities are being used for dark photon search at VTS in FNAL. During testing at 2 K the cavities experience frequency detuning caused by microphonics and slow frequency drifts. The experiment requires that the two cavities have the same frequency within 5 Hz. These two cavities are equipped with frequency tuners consisting of three piezo actuators. The piezo actuators are used for fine-fast frequency tuning. A PI loop utilizing the piezos was used to maintain both cavities at the same frequency, and the results are presented. | |||
![]() |
Poster WEPWB109 [1.151 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB109 | ||
About • | Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 27 June 2023 — Issue date ※ 18 July 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWB133 | Testing of the 2.6 GHz SRF Cavity Tuner for the Dark Photon Experiment at 2 K | cavity, SRF, experiment, ECR | 907 |
|
|||
At FNAL two 2.6 GHz SRF cavities are being used to search for dark photons, the experiment can be conducted at 2 K or in a dilution refrigerator. Precise frequency tuning is required for these two cavities so they can be matched in frequency. A cooling capacity constraint on the dilution refrigerator only allows piezo actuators to be part of the design of the 2.6 GHz cavity tuner. The tuner is equipped with three encapsulated piezo that deliver the long- and short-range frequency tuning. Modifications were implemented on the first tuner design due to the low forces on the piezos due to the cavity. Three brass rods with Belleville washers were added to the design to increase the overall force on the piezos. The results at 2 K of testing this tuner with and without the modification will be presented. | |||
![]() |
Poster WEPWB133 [0.829 MB] | ||
DOI • | reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB133 | ||
About • | Received ※ 16 June 2023 — Revised ※ 24 June 2023 — Accepted ※ 28 June 2023 — Issue date ※ 04 July 2023 | ||
Cite • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||