Keyword: damping
Paper Title Other Keywords Page
WEPWB103 Simulations and First RF Measurements of Coaxial HOM Coupler Prototypes for PERLE SRF Cavities HOM, cavity, coupling, simulation 831
 
  • C. Barbagallo, P. Duchesne, W. Kaabi, G. Olivier, G. Olry, S. Roset, Z.F. Zomer
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • B.S. Barriere, C.S. Clement, R.L.A. Gerard, F. Gerigk, P.M. Maurin
    CERN, Meyrin, Switzerland
  • J. Henry, S.A. Overstreet, G.-T. Park, R.A. Rimmer, H. Wang
    JLab, Newport News, Virginia, USA
 
  Superconducting Radio-Frequency (SRF) linac cryomodules are foreseen for the high-current multi-turn energy recovery linac PERLE (Powerful Energy Recovery Linac for Experiments). Coaxial higher order mode (HOM) couplers are the primary design choice to absorb beam-induced power and avoid beam instabilities. We have used 3D-printed and copper-coated HOM couplers for the prototyping and bench RF measurements on the copper PERLE cavities. We have started a collaboration with JLab and CERN on this effort. This paper presents electromagnetic simulations of the cavity HOM-damping performance on those couplers. Bench RF measurements of the HOMs on an 801.58 MHz 2-cell copper cavity performed at JLab are detailed. The results are compared to eigenmode simulations in CST to confirm the design. RF-thermal simulations are conducted to investigate if the studied HOM couplers undergo quenching.  
poster icon Poster WEPWB103 [1.533 MB]  
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB103  
About • Received ※ 18 June 2023 — Revised ※ 26 June 2023 — Accepted ※ 29 June 2023 — Issue date ※ 02 July 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWB128 Experimental Study of Mechanical Dampers for the FRIB β=0.041 Quarter-Wave Resonators cavity, operation, linac, ECR 898
 
  • J. Brown, W. Chang, W. Hartung, S.H. Kim, T. Xu
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the US Department of Energy, Office of Science, High Energy Physics under Cooperative Agreement award numbers DE-SC0018362 and DE-SC0000661 and Michigan State University.
The ’pendulum’ mechanical mode of quarter-wave resonators (QWR) often causes an issue with microphonics and/or ponderomotive instability unless otherwise the inner conductors are properly stiffened and/or damped. FRIB QWRs are equipped with a Legnaro-style frictional damper installed inside of the inner conductor such that it counteracts the oscillations of the inner conductor. In cryomodule tests and linac operation, we observed that the damping efficiency is different for a few β=0.041 QWRs. This study aimed to experimentally characterize the damping efficacy as a function of damper mass and surface roughness. We present damping measurements at room temperature and at two different masses and surface roughness as well as discuss future studies for damper re-optimization based on this follow-on study.
 
DOI • reference for this paper ※ doi:10.18429/JACoW-SRF2023-WEPWB128  
About • Received ※ 20 June 2023 — Revised ※ 22 June 2023 — Accepted ※ 26 June 2023 — Issue date ※ 04 August 2023
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)