

28 June 2021 – 02 July 2021

Design And Construction of Nb₃Sn Vapor Diffusion Coating System at KEK

K. Takahashi * A), E. Kako A) B), K. Umemori A) B), H. Sakai A) B), T. Konomi A) B), H. Ito B), T. Okada B) A) The Graduate University for Advanced Studies, SOKENDAL B) KEK

Introduction

[1] S. Posen et. al. Supercond. Sci. Technol. 34 (2021) 025007 (10pp)

- \blacktriangleright Nb₃Sn cavity : smaller heat load at 4.2 K & higher efficiency than Nb cavity
 - > Possible to operate at 4.2 K using a cryocooler
- \blacktriangleright Nb₃Sn coating method for the cavity : Vapor diffusion
 - \succ Best cavity performance at present.
 - ➢ Q0 = 3.0 × 10¹⁰ (at low field, 4.2 K), Eacc max = 22.5 MV/m [1]
- \blacktriangleright Nb₃Sn cavity R&D was started at KEK.
 - To realize a Nb₃Sn cavity cryomodules with the cryocooler
 - Constructed the coating system for development of Nb₃Sn coating cavities

Requirement for Nb₃Sn Coating System

- \succ Nb₃Sn coating temperature by vapor diffusion
 - Coating temperature : around 1100°C
 - > Avoid the growth of Nb-Sn compound
 - \succ formed Nb₃Sn when tin composition ratio 17-25 at%

- Cleanliness inside of the coating system
- \succ Impurities are possible to degrade the cavity performance
 - > To prevent contamination from coating chamber

⇒Need to prepare coating chamber made of Nb

- \succ To prevent contamination outside of the system. ⇒Need to build clean booth
- \succ Condition for uniform coating
 - > The mean free path of the tin needs to be short

⇒Need to install additional heater for tin crucible

Design of Nb₃Sn Coating System

Furnace

- > Operation temperature : **100°C** ~ **1200°C** (\pm 10 °C)
- Vacuum pressure

 $: < 1 \times 10^{-4}$ Pa (RT) < 1 × 10⁻² Pa (600°C) < 1 × 10⁻¹ Pa (1200°C)

Coating Chamber

 \succ Material : Nb (ASTM commercial grade) Inner size : Φ 305 [mm] \times 2272 [mm] (Cavity) + Φ 30 [mm] \times 80 [mm] (Tin crucible) > Vacuum pressure : < 1 \times 10⁻⁵ Pa (RT, after baking) < 1 × 10⁻⁴ Pa (Coating process)

- Tin heater
 - Maximum temperature : 1500°C
- \succ Tin crucible & Tin chloride crucible
 - Material : tungsten
- Clean booth
- Class 3, 2m in height, 1m in width, and 4m in length

Mo heater Inside of furnace

Fig.5Tin heater

Commissioning of Furnace

 \succ After constructing, stand-alone test was performed.

- ➢ Furnace
 - ➢ 500°C for 4.5 hours : Nucleation
 - > 1100°C for 3 hours : Coating, Annealing
- > Tin heater
 - > 1300°C for 1.5 hours : Coating
- Vacuum pressure of the coating chanber was less than 1×10^{-4}
- > The coating system is possible to coat Nb₃Sn film

Summary and Outlook

- At KEK, Nb₃Sn coating system was constructed.
- \succ Consists of the furnace, the Nb coating chamber, and the tin crucible heater.

 \succ Tin crucible heater : 1100°C for 1.5 hours

