

### **STUDY OF SURFACE TREATMENT OF 1.3GHz SINGLE-CELL COPPER CAVITY FOR NIOBIUM SPUTTERING** F.Y. Yang \*, P. Zhang, J. Dai, Z.Q. Li, P. He, Y.S. Ma Institute of High Energy Physics, 100049, Beijing, China



### Abstract

A R&D program on niobium sputtering on copper cavities has started at IHEP in 2017. Single-cell 1.3 GHz copper cavity has been chosen as a substrate. A chemical polishing system has subsequently developed and commissioned recently to accommodate the etching of both copper samples and a cavity. Different polishing agents have been tested on copper samples and later characterized. The results of these surface treatment tests are presented.

#### $H_2O_2 - H_2SO_4$ Mixed Acid Solution **Dilute Sulfuric Acid Etching** Composition Content Involved chemical reaction: 3 4 5 6 7 8 9 20 $CuO + H_2SO_4(dilute) = CuSO_4 + H_2O (1)$ $H_2SO_4$ 200g/l • Three sulfuric acid concentrations were $H_2O_2$ 70ml/l tried, 10%, 15%, 20% respectively.





Copper samples before chemical polishing



Copper samples after chemical polishing (10%)

- The surface of the copper samples soaked in the sulfuric acid was not significantly improved by visual inspection.
- The roughness before chemical polishing is 0.587 $\mu m$ , and the roughness after chemical polishing is 0.533  $\mu m$ .



Variation curve of the chemical etching thickness and rate with elapsed time

Copper samples after chemical polishing

SEM surface pictures of copper samples after chemical polishing at different time

### 3. SUBU5 Chemical Etching



- Specific processing steps :
  - Mechanical polishing.
  - Degreasing.
  - Activation pretreatment with dilute sulfamic acid [2].
  - Chemical polishing (SUBU5) with bath agitation.
  - **Cooling to room temperature.**
  - Passivation with dilute sulfamic acid [2].
  - Ultrapure water cleaning.
  - Soaked in absolute ethyl alcohol.
  - Drying with high purity nitrogen and packing in plastic bag under high purity nitrogen.
- The surface roughness of copper samples before SUBU chemical polishing is around 0.5  $\mu$ m. And the surface after SUBU bath chemical polishing presents an average roughness  $R_a$  of 0.1  $\mu$ m.
- The oxygen-free copper samples that are successfully chemical polished can be able to obtain a surface close to that of a mirror.
- There are some pitting and slight scratches on the copper sample surface according to the SEM image.

# 4. Chemical polishing circulation system



• A closed cycle system was established for the

# 5. Conclusion

• Up to now, the chemical polishing agent and specific procedure have been determined. Meanwhile, the chemical polishing system for the copper

Chemical polished copper cavity substrate



copper cavity substrate chemical polishing.

- The self-circulating pipe volume of this system is 6 liters, and the volume occupied by 1.3GHz copper cavity is 4 liters.
- We are now adjusting the setup of the chemical polishing system to obtain a larger volume of pipe.

cavity substrate has been built.

• We seek to expand the volume of the circulation pipe to remove thicker copper layer [3].

#### References 6.

- [1] S.Y. Zhang, "Chemical etching or chemical polishing of copper and copper alloy with  $H_2O_2 - H_2SO_4$  mixed solution", Electroplating and Finishing 2(1983):25-31(in Chinese). [2] G. Lanza *et al.*, "The HIE-ISOLDE superconducting cavities: surface treatment and niobium thin film coating", Proceedings of SRF09, THPPO075, Berlin, Germany.
- [3] Calatroni, Sergio et al. Influence of copper substrate treatments on properties of niobium coating. No. CERN-MT-93-11-SM. P00019441, 1993.

#### **ACKOWLEDGEMENT:**

PAPS project and National Key Programme for S&T Research and Development (Grant NO:2016YFA0400400)



RF Group, Accelerator Department

#### Fuyu Yang

Ph.D. candidate in Accelerator Physics "Niobium Sputtered on Copper Cavity"

◆ Address: 19B Yuquan Road, Shi Jingshan District, Beijing, P.R. China. Email: yangfy@ihep.ac.cn