HOMs extraction structure design for HEPS 166.6MHz cavities

X. Hao, Z.Li, F.Meng, P.Zhang, X.Zhang

Institute of High Energy Physics (IHEP), Chinese Academy of Sciences (CAS), Beijing, China

- Higher order modes (HOMs) may affect beam stability and refrigeration requirements of superconducting cavity such as the 166.6MHz superconducting(SC) cavity, which is studied at IHEP.
- Under certain conditions beam-induced HOMs can accumulate sufficient energy to destabilize the beam or quench the SC cavities. In order to limit these effects, we considers the use of coaxial HOM couplers on the cut-of{}f tubes of the SC cavity.
- However, HOMs cannot be effectively extracted by HOM couplers. Therefore, it is necessary to design a HOMs extraction structure to introduce the dangerous modes from the cavity into the bundle tube, which are designed to couple to potentially dangerous modes while sufficiently rejecting the fundamental mode.
- The HOMs extraction structure consists of an enlarged tubes, a coaxial structure, and the petal. The extraction of the dangerous modes and the suppression of the fundamental mode are realized by the petal structure and the coaxial structure.
- In order to verify the designs, a rapid prototype for the favored structure was fabricated and characterized on a low-power test-stand.

1. The HOMs and their DAMPING REQUIREMENTs

2. (simulation) HOMs extraction structure

100	300	500	700	900	1100		
	Frequency[MHz]						

Mode	Freq. [MHz	z]R/Q [Ω]	$Z_{ }^{th} [\Omega]$	Q_{ext}^{th}
M1	166.6	136		1.0E + 09
M2	464.5	71.8	8.5E + 04	1.3E + 03
M3	700.3	49.1	5.6E + 04	1.5E + 03
M4	920.8	8.4	4.3E + 04	1.1E + 04
Mode	Freq.[MHz] R/Q [Ω/m]	$Z_{x,y}^{th} \left[\Omega/m\right]$	Q_{ext}^{th}
D1x	433.3	363	5.3E + 05	2.9E + 03
D1y	434.4	416	3.0E + 05	1.4E + 03
D2x	645.3	450	5.3E + 05	2.4E + 03
D2y	647.1	470	3.0E + 05	1.3E + 03
D3x	873.9	511	5.3E + 05	2.1E + 03
D3y	874.4	534	3.0E + 05	1.1E + 03

Frequency [GHz]

Frequency [GHz]

	Mode	Freq. [MHz]	R/Q [Ω]	Q_{ext}
	M1	166.8	136	2.6E+05
	M2	463.5	88	1052
	M3	698.6	33.5	892
	M4	921.7	4.5	446
	Mode	Freq.[MHz]	R/Q [Ω/ <i>m</i>]	Q_{ext}
-	D1.1	431.9	210	786
	D1.2	432.9	449	806
	D2.1	642.3	525	456
	D2.2	647.3	307	153
	D3.1	867.3	142	284
	D3.2	869.9	124	232

3. (Test) HOMs extraction structure

Mode	freq.[MHz]	Q_{ext}		Q_{load}	
		Sim.	Test	Sim.	Test
M1	166.7	8.73E+05	7.38E+05	1.21E+04	1.04E+04
M2	464.0	3.70E+03	5.31E+03	3.17E+03	4.14E+03
M3	698.6	1.00E+04	3.10E+04	2.26e+03	3.49e+03
M4	920.7	4.81E+03	1.10E+04	1.14E+03	2.64E+03
D1	433.1	1.20E+03	4.11E+03	1.14E+03	3.46E+03
D2	644.3	2.63E+03	7.57E+03	4.63E+02	5.00E+02
D3	866.1	1.95E+03	2.66E+03	1.13E+03	1.89E+03

