

Quadrupole Scan Transverse Emittance Measurements of SRF Gun at ELBE / HELMHOLTZ ZENTRUM DRESDEN ROSSENDORF

S.Ma^{1,3)}, A. Arnold¹⁾, R. Anton¹⁾, J. Schaber^{1,2)}, J.Teichert¹⁾, R. Xiang¹⁾, K. Zhou^{1,3)}, ¹⁾ Helmholtz-Zentrum Dresden-Rossendorf, Germany, ²⁾ Technische Universität Dresden, Germany ³⁾ China Academy of Engineering Physics

- mode: CW
- bunch charge: 60 pC
- Gun gradient = 7.142 MV / m
- Cavity1 gradient = 8.023 MV / m
- Cavity2 gradient = 4.522 MV / m
- Energy = 16.116 MeV-
- Bunch length $\sim 2 \text{ ps}$ _

Energy spread: 0.2% _

- DC voltage: -5 kV

- integrate the distribution and calculate beam rms sizes
- fit beam rms sizes as quadrupole strength

$$\sigma_{11} = \langle x_i \rangle = c \beta, \sigma_{22} = \langle x_i \rangle = c \gamma,$$

$$\sigma_{12} = \sigma_{21} = \langle x_i x'_i \rangle = -\epsilon \alpha. \langle x_i^2 \rangle$$

$$\epsilon = \det(\Sigma) = \sqrt{\sigma_{11}\sigma_{22} - \sigma_{12}^2}$$

$$\epsilon_n = \beta \gamma \epsilon$$

$$M = \begin{pmatrix} 1 & d \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ \mp kl & 1 \end{pmatrix}$$

$$\sigma_{11}^{s} = (\sigma_{11}^{q} d^{2} l^{2}) k^{2} + (2dl\sigma_{11}^{q} \mp 2d^{2} l\sigma_{12}^{q}) k + \sigma_{11}^{q} + 2d\sigma_{12}^{q} + d^{2}\sigma_{22}^{q}$$

Quadrupole calibration

Emittance results

	$\epsilon_n(\pi.mm.mrad)$ thin-approximation	$\epsilon_n(\pi.mm.mrad)$ without approximation
Quad.1	$3.642 {\pm} 0.068$	$3.080{\pm}0.068$
Quad.2	5.078 ± 0.129	$3.383 {\pm} 0.107$
Quad.3	14.703 ± 0.479	$5.985 {\pm} 0.240$

Acknowledgement

We would like to thank the whole ELBE team for their help with this project. The discussion with Houjun Dr. Qian from PITZ DESY is really helpful. The work was partly supported by China Scholarship Council, and Fluid Institute of physics, China Academy of Engineering Physics.

Reference:

[1] Wiedemann, Helmut. Particle accelerator physics. Springer, 2015.

[2] Anderson, S. G., et al. Physical Review Special Topics-Accelerators and Beams 5.1 (2002): 014201.

[3] Lu, Pengnan. Optimization of an SRF Gun for high bunch charge applications at ELBE. Diss. Saechsische Landesbibliothek-Staats-und Universitaetsbibliothek Dresden, 2017.

[4] Vennekate, Hannes. "Emittance Compensation for SRF Photoinjectors." (2017).

Contact: Shuai Ma, Institute of Radiation Physics, Radiation Source ELBE. Email: s.ma@hzdr.de

19th International Conference on RF Superconductivity, June 30th – July 5th, Dresden.