

Metallographic Polishing Pathway to the Future of Large Scale SRF Facilities

Oleksandr Hryhorenko¹⁾, C. Z. Antoine²⁾, Marin Chabot¹⁾, David Longuevergne¹⁾ 1) Institut de Physique Nucléaire d'Orsay, CNRS-IN2P3, Université Paris-Sud, 91400 Orsay, France 2) Service des Accélérateurs, de Cryogénie et de Magnétisme, CEA/IRFU, 91191 Gif-sur-Yvette, France

Abstract

Optimization of SRF cavities mainly focuses on pushing the limits of bulk Niobium, cost reduction of cavity fabrication and development of new SRF materials for future accelerators (ILC, FCC). Nowadays chemical etching (BCP & EP) is the only surface treatment used to prepare SRF surface made from Nb. However the operational cost of chemical footprint. The search of an alternative technique could make the construction of these future large scale facilities possible.

Metallographic polishing (MP) is a candidate not only for bulk Nb treatment, but could also provide the mirror-finished substrate for alternative SRF thin films deposition. Recent R&D studies, conducted at IPNO & IRFU, focused on the development of 2-steps MP procedure of Nb flat samples. Roughness of polished surface has been proven better than CBP. MP provides on flat surfaces a high removal rate (above 1 µm/min) and high reproducibility. The paper will describe the optimized method and present all the surface analysis performed. The first RF characterization of a polished disk will be presented.

cavity processing

Planarization of the surface

Remove damages and pollution from abrasion step

- Removal of existing damaged layer from sheet manufacturing (typically 100-200 µm)
- Achieve surface average roughness Sa < 0.1 µm •
- Preserve superconducting properties over few 100 nm

Surface Characterization

Depollution control during CMP step

Contamination is observed after abrasion (*diamond particles*) Polishing step removes diamonds, however some roughness reappears (chemical mechanical polishing)

Damaged layer control by BCP etching

EBSD damaged layer control

RF characterization

INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY

Conclusion & Perspectives

A two-steps polishing procedure was successfully developed at IPNO and applied on RF disk. Optical characterizations have been performed showing a non-polluted and non-damaged surface. Not only the quality of the surface is important, but also the material quality underneath over a depth of several hundreds of nanometers. As a consequence, optical quality is necessary but not sufficient. Thus, the ultimate surface characterization testifying of the quality of this polishing procedure is the RF test at cryogenic temperature. This test performed at SLAC showed very promising results (visible superconducting transition at 9.2K). Unfortunately, because of technical limitations inducing a very early saturation of the surface resistance, the decay of superconducting BCS resistance with Tc/T couldn't be measured properly. A way to mitigate these "high frequency" limitations would be to test a sample at a lower frequency, as on IPNO test bench as soon as this one would be available (the sample disk is ready to be tested).

Acknowledgments: The author would like to thank P. Welander (SLAC laboratory) for the his helpful advices on various technical issues connected with the metallographic tasks. This work was supported by the European Nuclear Science and Applications Research - 2 (ENSAR-2) under grant agreement N°654002. E-mail: hryhorenko@ipno.in2p3.fr