New Tuners for ILC Cavity Application

Shuichi Noguchi KEK

Outline

- Brief Introduction
- New Tuners for ILC Application
 Elliptical Cavity
 Pulsed Operation
 High Gradient
 Lorentz Detuning Compensation
 (Cavity Deformation by Maxwell Stress)

Frequency Tuner

- RF Accelerating Cavities usually have Tuners.
- They are used to tune the Cavity Resonance Frequency, in order to minimize the reflected RF power, usually.
- Tuning Accuracy << Resonant Band Width
- They must cover the Wide Range of the Fabrication Error.
- Feed-back can be used in CW operation.

Possible Error Sources

Error Sources	Magnitude	Speed	
	/ Bandwidth		
Fabrication Error	Very Large	Static	
Drift (Temperature, Pressure)	Comparable	Slow	
Micro-Phonics (Vibration)	Small	Slow	
Beam Loading (if ϕ is not 0)	Comparable	Slow	
De-tuning Offset	Comparable	Offset	
Lorentz De-tuning	Comparable	Fast in Transient	

Tuning Principle : by Slater

Volume Change of $\Delta V \rightarrow$ Frequency Change of Δf

New Tuners Several Candidates for the ILC Cavity

Requirement Stroke > 2mm, Axial Force > 6000N It must not move the Beam Axis. Compact and Reliable Fast Response → Piezo

Shuichi Noguchi, SRF2007, 10.7

Tuner	Booster-1	Booster-2	Booster-3	Experience
Saclay-1	Lever	Lever	Screw	TTF
Saclay-2	Cam & Lever	Screw		Under Test
Blade	Blade	Lever	Screw	Under Test
Ball-Screw	Large Screw	Worm Gear	Worm Gear	Under Test
Slide Jack	Wedge	Screw	Gear	Under Test

Shuichi Noguchi, SRF2007, 10.7

8

Lever

Saclay -1 : Operation Principle

Saclay-1 on a TTF Cavity

First Lever

Second Lever

11

Double Lever Tuner Stiffness ~ 100 N/µm

Two Piezos

Shuichi Noguchi, SRF2007, 10.7

Saclay - 2 : Cam & Lever

Shuichi Noguchi,SRF2007,10.7

Blade : Jack System

Blade : Jack, Lever & Screw

Blade Tuner 25 N/µm

Not Stiff, Fatigue of Blade, $K_S=13N/\mu m$

Original DESY

Shuichi Noguchi, SRF2007, 10.7

Ball Screw : Large Ball Screw

Coaxial Ball Screw 500N/µm

Need Long Stroke Piezo, Fatigue of Blade

Slide Jack : Roller Wedge & Screw

Slide Jack Tuner 290N/µm

Shuichi Noguchi,SRF2007,

Tesla-like STF Baseline Cavity Package

Summary

- Several Candidates for ILC Application
- After Experimental Demonstration of Performances and Comparison from many Aspects, Decision will be done.
- Some of these Tuners can be used for other Application, with Simplified Design.

