# Gradient Yield Improvement Efforts for Single and Multi-Cells and Progress for very high gradient cavities

### Kenji Saito, KEK

- ILC cavity specification
- Multi-Cell Studies in Labs
- **Single Cell Studies**
- Progress for very H.G
- **Summary**

### ILC cavity specification at Snowmass 2005

Most Tesla cavities should be able to reach 35MV/m accept Most LL/RE cavities should be able to reach 40 MV/m accept But note there is a low energy tail that fails



Gradient [MV/m]

#### **Scatter Problem developed after the Snowmass**



### **S0/S1 GDE Taskforce**

- S0 task force membership
  - Hitoshi Hayano (KEK), Toshiyasu Higo (KEK), Lutz Lilje (DESY), John Mammosser (SNS), Hasan Padamsee (Cornell), Phil Pfund (FNAL), Marc Ross (FNAL), Kenji Saito (KEK), Bill Willis (Columbia), Camille Ginsburg (FNAL)
- Goal for cavity performance in vertical test
  - ILC baseline (RDR):  $E_{acc} \ge 35 \text{ MV/m}$ ,  $Q_0 \ge 0.8 \times 10^{10}$
  - − Proof of principle:  $E_{acc} \ge 35$  MV/m and  $Q_0 \ge 10^{10}$ , with yield > 90% for >100 cycles
- Plan for achieving goal
  - Two steps
    - S0 : Tight loop to improve "final preparation" yield
      - Process and test few cavities repeatedly; test of processing
    - S1 : Production-like activities to determine overall yield for cavity materials, fabrication and full cavity processing
      - Process and test batches of 10's of cavities; test of full cycle including fabrication, surface processing, assembly
  - Closely coordinated global execution
    - Reproducibility from lab to lab
      - Complete description of preparation and testing processes
      - Common minimum test procedure and reporting of results
      - Compare regional preparation setup performance
    - Time scale should be commensurate with completion of the EDR (mid 2009)



## **Well Qualified Vendors**



The average is getting the ILC target but the large scatter is still a problem!



EBW @ equator might be a issue !

K.Saito

SRF2007 Beijing

## **KEK Baseline Cavities**

#### By E.Kako et al.



Why every cavity does limit often around 20MV/m? EBW @ equator might be a problem.

### **Problems in Ichiro 9-cell cavity**



Redesigned cavity fabrication is under way.

#### Performance Scatter seen in LL single cell study @



### **TESLA collaboration Meeting @ Frascati Dec. 2006**

### List and prioritize R&D activities

P.Kneisel @ JLAB

- Re-visit residual contamination of EP surfaces: XPS,SIMS? FE
- Investigate different rinsing methods: hot water (Henkel, KEK), H<sub>2</sub>O<sub>2</sub> + US, anodizing, oxipolishing,... on samples, single cells: either several or reference cavity of known performance
- Removal of sulfur from mixture: filtering?, solvents,...
- Implement "on line" monitoring of HF concentration and polarization curves, purity (gas chromatography)
- Shaping of cathode:
  - more uniform material removal, more uniform polarization curves over whole surface, lower voltage to achieve required current density, more uniform T-distribution?
- Does it make sense to explore other acid mixtures? Or should one concentrate on making present process "fool proof"?

K.Saito

### Single cell study issues and the Priority list at KEK

|                                                    | Expected yield rate | Disadvantage                           | Comment                                      | Simplicity &<br>Safety | Cost<br>increase | Score        | Priority  |
|----------------------------------------------------|---------------------|----------------------------------------|----------------------------------------------|------------------------|------------------|--------------|-----------|
| EP(20)+HPR+Bake                                    | 0.7                 |                                        | ILC BCD                                      | 1.0                    | 1.0              | 1.0          | Reference |
| EP(20)+H <sub>2</sub> O <sub>2</sub> +<br>HPR+Bake | 0.9                 | Cost increase                          | TRISTAN Recipe                               | 1.1                    | 1.1              |              | 1         |
| EP(20)+Degreasing+<br>HPR+Bake                     | 0.9                 | Cost increase                          | 29MV/m with<br>TESLA 9-cell<br>cavity @ Jlab | 1.1                    | 1.1              | (.17)        | 1         |
| EP(20)+Alcohol<br>+HPR+Bake                        | 0.85                | Cost increase<br>Cure against<br>burst | Stopped @ KEK<br>Desy trying                 | 1.15                   | 1.15             | 1.06         | 2         |
| EP(20)+HF<br>rinsing+HPR+Bake                      | 0.8                 | Cost increase<br>Hazardous             | Not so big<br>potential but low<br>FE @ KEK  | 1.1                    | 1.15             | 0.99         | 3         |
| EP(20)+Boling W<br>+HPR+Bake                       | 0.8                 | Cost increase complex                  | Hydrogen doping                              | 1.1                    | 1.15             | 0.99         | 3         |
| EP(20)+EP(3 with<br>fresh)+HPR+Bake                | 1.0                 | Cost increase                          | 45MV/m with LL<br>shape @ KEK                | 1.1                    | 1.2              | <b>[</b> .19 | 1         |
| EP(20)+Oxipolishing<br>+HPR+Bake                   | 0.9                 | Additional process                     | Stopped @ KEK                                | 1.5                    | 1.3              | 0.99         | 3         |

Score : (Expected yield rate / 0.7) /Cost increase

#### Detail information TUP10 by Furuta et al.

#### **Current recipe study by single cell @ KEK**



#### New Recipes Search by single cell @ KEK





### **Ethanol Rinsing @ DESY 9-cell**









SRF2007 Beijing

### **Mechanism to explain the scatter**



Only strength of the rinsing method could not fix the scatter problem. The EP flush would be important to make narrow scatter.

# **Progress for very high Gradient**

SRF2007 Beijing

## **High Gradient Cavity Shapes**

#### **Cavity shape designs with low Hp/Eacc**

| TTF: T<br>Reentra<br>Low Los<br>Ichiro- | ESLA shape<br>ant (RE): Cornell Univ.<br>as (LL) : JLAB/DESY<br>-Single (IS) : KEK | <b>TTF</b><br>1992 | LL<br>2002/2 | - F<br>2004 20 | RE<br>02 |
|-----------------------------------------|------------------------------------------------------------------------------------|--------------------|--------------|----------------|----------|
|                                         |                                                                                    | TESLA              | LL           | RE             | IS       |
|                                         | Diameter [mm]                                                                      | 70                 | 60           | 66             | 61       |
|                                         | Ep/Eacc                                                                            | 2.0                | 2.36         | 2.21           | 2.02     |
| Hp/Eacc [Oe/MV/m]                       |                                                                                    | 42.6               | 36.1         | 37.6           | 35.6     |
|                                         | R/Q [W]                                                                            | 113.8              | 133.7        | 126.8          | 138      |
|                                         | G[W]                                                                               | 271                | 284          | 277            | 285      |
|                                         | Eacc max                                                                           | 41.1               | 48.5         | 46.5           | 49.2     |

#### from J.Sekutowicz lecture Not

#### Successful Principle Proof of the 50MV/m at





| Sing | gle | 5   |   |
|------|-----|-----|---|
| -    |     | 2   | 3 |
|      |     |     |   |
|      | 1   | The | - |

|   | Diameter [mm]     | 61   |
|---|-------------------|------|
|   | Ep/Eacc           | 2.02 |
|   | Hp/Eacc [Oe/MV/m] | 35.6 |
| 1 | R/Q [W]           | 138  |
|   | G[W]              | 285  |
|   | Eacc max          | 49.2 |

#### Alternate R&D, Single Cell Results 60mm-Aperture Re-Entrant Cavity - Best Eacc = 59 MV/m

# Re-entrant Shape Cavity

Cornell 60 mm aperture re-entrant cavity LR1-3 March 14, 2007 1.00E+11 .\_**i**\_\_i\_\_i\_\_i\_\_i\_\_i\_\_i ------60mm BP diameter 8 1.00E+10 1.00E+09 0 10 20 30 40 50 60 70 Eace [MV/m]

(EP+HPR+Bake+Test) @ KEK  $\implies$  Degreasing +HPR @ Cornell

45MV/m @ KEK due to HPR pump contamination problem

İİL

### History of the H.G improvement last 15 years



Now magnetic field limits the H.G !

### **Study on END Group Effects**

We have to understand why single-cell and multi-cells have such different result so far.



K.Saito



- Gradient scatter in 9-cell cavity is a most concerned issue for the ILC cavity specification.
- GED has set the S0/S1 task force in order to solve this problem by middle of 2009. It is well started in several institutes as international collaboration.
- Single cell study is getting hints to understand the mechanism of the scatter problem.

Degreasing or Alcohol rinsing after EP gives a better performance but can not solve the scatter problem perfectly.

Fresh EP could be an important process to fix the problem.

• New cavity shapes have made a remarkable break-through to push gradient since the SRF 2005. Now the gradient is closing to 60MV/m.