

Review of High Field Q-slope, Surface Measurements

Alexander Romanenko Cornell University Laboratory for Elementary-Particle Physics

Motivation

- Key properties of the HF Q-slope
 - Mild baking removes completely (in EP) or improves it (in BCP)
 - Why the difference between EP and BCP after baking?
 - Air exposure has no effect on baking benefit
 - Observed distribution of losses in the high magnetic field region is not uniform – "hot" and "cold" spots
 - But both "hot" and "cold" regions exhibit HF Q-slope, only amount of heating is different
- Surface studies looking for:
 - What changes during mild baking and is preserved after air exposure?
 - Fine, large and single grain Nb BCP and EP samples
 - What is different between "hot" and "cold" regions?
 - Samples dissected from a not baked cavity with the HF Q-slope

- Roughness – AFM, OP
- Grain Boundaries
 - Magneto-optical imaging
- Oxide structure
 - XPS
- Interstitial impurities (O, H, N, ...)
 SIMS, ToF-SIMS, 3DAP
- Crystalline microstructure
 - EBSD

Tools Used

What changes during mild baking and is preserved after air exposure?

Baking Effect: B_{c3}

[S. Casalbuoni et al, Hamburg]

- Baking effect clearly observed
- EP superior to BCP after baking – higher B_{c3}?

Is it oxide structure?

- Elemental composition within first few nm (except for H and He)
- Chemical state information
- Sensitivity limited to about 0.1-1 at.%
- Non-destructive depth profiling possible with variable X-ray energy or angle-resolved XPS
- But mostly oxide signal

Oxide structure (XPS)

- Al K α hv=1486.6 eV
- Systematic study of mild baking effect on niobium oxide structure
- BUT only "in situ" no air exposure
- Nb₂O₅ gets partially converted to suboxides

 possible cause of residual losses increase (up a few nOhms)

Baking + Air exposure (XPS)

Classic recipe : 120 ° C , 48 hrs, UHV

• Air exposure = back to unbaked – oxide and interface are not responsible

• Oxide structure = mostly Nb₂O₅ + small amount of suboxides

What XPS tells us?

- Mild baking = Nb_2O_5 -> suboxides + slight breakup
- Air exposure after baking = oxide structure back to before baking
- Oxide modification is not responsible for HF Qslope

Is it interstitial impurities (O, H,...)?

Secondary Ion Mass Spectrometry

• Very sensitive – ppb detection possible

Destructive depth profiling *BUT*

• Instrumental effects – preferential sputtering of oxygen, roughness effect on signal, chemical information not reliable due to sputtering-induced ion production

ToF-SIMS (G.Eremeev, Cornell, J.Francis, UWO)

- Single grain BCP samples
- HPR + 110C 48hrs UHV baking + air exposure
- Spot to spot variation comparable to bake/unbake
- O and H profiles unchanged due to bake

Intensity (a.u.)

1E+01

1E+00

1E-01

1E-02

1E-03

1E-04

0

Cornell University Laboratory for Elementary-Particle Physics

Nb₂O⁺/Nb₂⁺

10

50

B.Visentin, **Thin Film** Workshop, 2006

Baking Effect (SIMS)

Oxygen diffusion is not responsible for mild baking improvement

40

30

20

Abrasion Depth (nm)

But responsible for degradation after higher T baking

Baking + Air Exposure (SIMS)

Single grain BCP

J.Kaufman, Cornell

- No conclusive evidence that oxygen-(impurity-) enriched layer underneath the oxide is responsible for HF Q-slope
- Insignificant change in O related signals after mild baking
 - As opposed to significant effect on cavity performance
- Changes in surface O, NbO, ... due to baking eliminated by air exposure
 - As opposed to cavity performance, which stays same after air exposure

Is it crystalline microstructure?

Electron Backscattered Diffraction

- Based on diffraction of backscattered electrons
- Information depth 20-100 nm
- Crystallographic orientation mapping
- Information on crystal defects distribution

EBSD: Local Misorientation

 $\Delta \alpha_i$ – angle to rotate the unit cell to make orientations equal

Local misorientation = 1/8 * $\Sigma(\Delta \alpha_i)$

Baking effect is seen

Roughness role?

AFM: Roughness is the major difference between EP and BCP

BCP

	<u>50 μm</u>	
1	· · · · · · · · · · · · · · · · · · ·	

Img.	Z range	2.681 µm
Img.	Mean	0.077 nm
Img.	Raw mean	-243.23 nm
Img.	Rms (Rq)	447.55 nm
Img.	Ra	371.30 nm
Img.	Rma×	2.608 µm
Img.	Srf. area	2526.5 µm²
Img.	Prj. Srf. area	2500.0 µm²
Img.	Srf. area diff	1.061 %
Img.	SAE	1.005

Image Statistics

10

10

20

40

30

Img.	Z range	349.61 nm
Img.	Mean	0.121 nm
Img.	Raw mean	-344.43 nm
Img.	Rms (Rq)	78.660 nm
Img.	Ra	67.523 nm 🌙
Img.	Rma×	345.21 nm
Img.	Srf. area	2501.3 µm²
Img.	Prj. Srf. area	2500.0 µm²
Img.	Srf. area diff	0.051 %
Img.	SAE	1.000
Img.	SAE	1.000

Image Statistics

EP - "smoother", rounded GB steps

EP

Mild baking conclusions

- Oxide not responsible
- Interstitial O not responsible
- Roughness is not a cause of the Q-slope
 - Because EP and BCP have similar Q-slopes before baking
 - But it might contribute to full explanation of why EP is better than BCP after baking
- B_{c3} changes due to mild baking
- Crystalline defect structure may play a role

What causes non-uniformity of heating in the high field Q-slope regime?

а

Magneto-Optical Imaging (FSU/ASU – Polianskiy et al.)

A.Romanenko

Cornell: Cavity Dissection

Is non-uniformity caused by roughness variations? – No!

•Average roughness – $\sigma = 1.5$ -1.8 μm is the same

OP: No difference in step heights

XPS: Oxide structure

 Is patchiness caused by oxide structure differences? – No!

Hot Cold

Is non-uniformity caused by contaminants other than O?

Nitrogen

- Al Kα 1486.6 eV X-ray source
- Information depth ~7 nm
- 0.5-1 mm grain size

XPS: "Hot" and "Cold" Spots

- Synchrotron X-ray source -NSLS
- hv = 2139 eV
- Information depth ~10 nm

A.Romanenko (Cornell), J.Woicik (NSLS)

EBSD: Is grain orientation responsible? (Small grain BCP cavity)

A.Romanenko

EBSD: Is it crystalline microstructure?

- Contaminants other than O?
 - Nitrogen found in small grain BCP cavity "hot" regions
- Crystalline defects, strain?
 - Difference observed between hot and cold regions in large grain BCP cavity

New Info Coming...

• TEM (Russell, ...)

• 3DAP (Yoon, ...)

X-ray techniques (Delheusy, Antoine)

 Diffuse diffraction, crystal truncation rod, reflectometry

- SIMS, XPS do not support O related pollution layer or its change due to baking
- Grain boundaries no contribution observed
- Preferred crystalline orientation not a cause
- Roughness is not playing a primary role but may be subsidiary
- Crystalline defect structure within penetration depth might play a role
 - Different in BCP and EP
 - Sensitive to mild baking
 - Preliminary different in "hot" and "cold" spots
 - More studies needed