SRF ACTIVITES AT IUAC, NEW DELHI AND OTHER LABORATORIES IN INDIA

Amit Roy Inter University Accelerator Centre, Aruna Asaf Ali Marg, P.O.Box 10502 New Delhi -110 067, India

15UD Pelletron atIUAC, Delhi with Nb QWR based **Superconducting Linac**

14UD Pelletron at TIFR, Mumbai with Pb on Cu QWR based Superconducting Linac

R &D at RRCAT, Indore

Accelerator Augmentation at IUAC

Superconducting Linac booster Complete indigenous technology development Resonator fabrication facility set-up Large Cryogenic system RF electronics, synergy with National laboratories and industry Beam Transport systems

Low Energy Ion Beam Facility

Versatile facility for heavy ions , multiply charged ions down to few keV energy.

High Current Injector

Novel Electron Cyclotron Resonance ion source using high Tc superconductor.

Radio frequency quadrupole accelerator

Inter-University Accelerator Centre Pelletron & Linac Booster

QWR-I1, RUN#1 - STC

One of the two fully indigenously fabricated resonators at IUAC along with its slow tuner bellows.

Several critical repair jobs of the cavities have also been undertaken.

EBW

VAC FURNACE

EP SET-UP

Parts of Nb QWR cavities

First Linac module with post-linac beam line. $E_{\rm gain}$ ~21 MeV for Si^{+10} beam with 5 resonators.

Rebuncher Cryostat

Old Drive

New Drive with linear & rotary motion

New Drive with rack & pinion outside

SS bellow for slow-tuner pneumatic control

- Use of formed, instead of welded, bellows appeared as an option.
- Tests with the new design are successful.

Damping of Mechanical vibrations of resonators studied.

S.Ghosh, P.N.Patra, B.K.Sahu, A.Rai, G.K.Chaudhuri, A.Pandey, D.Kanjilal and A.Roy, Physical Review ST AB 10 (2007) 042002

NEW PROJECT

- 1. Fabrication of 2 Single Spoke Resonators for Fermi Lab proton driver.
- $\delta 2 = 0.22$

2. Design and fabrication of $\Im = 0.045$, QWR for heavy ions for the HCI project.

Schematic of Superconducting Linac booster at TIFR

SCHEMATIC LAYOUT OF LINAC HALL

Pelletron accelerator

- $-\,E/A\sim3\text{-}7$ MeV, $\beta\sim0.08\text{-}0.12$
- Heavy ions reactions upto A ~ 40

Superconducting Linac booster

- $-E/A \sim 5-12$ MeV, $\beta \sim 0.10-0.16$
- Heavy ions reactions upto A ~ 80 (limited by pre-accelerator)

- Beam intensity: 0.1-10 pnA (10⁹⁻¹¹ p/s) (limited by ion source)

(Pb plated Cu Quarter Wave Resonator)

Top view of the module

R&D on Superconducting Materials Relevant for Accelerators: Program at RRCAT, Indore

Questions being asked:

Is there any definite dependence of H_{critical} on,

- •the methods of sample preparation, grain size ?
- •the surface treatment– EP versus BCP ?
- •the annealing temperature and time ?

Experimental tools used:

Magnetometry : SQUID magnetometer and VSM. Surface studies : SEM.

Thermal properties– thermal conductivity & Sp. Heat.

RF surface resistance measurement: Future plan.

Buffered chemically polished (BCP) samples of Niobium obtained from Fermi Lab, USA: Magnetization versus temperature plots & SEM results

Nb # 16 FCC 0.00 FCŴ -0.01 H=100 Oe T_o = 9.2 K 0.0000 Sample # 16 -0.001 -0.0015 ZFC Avg grain size -0.0030 -0.04 т (к) ~ 30-35 Micron ZFC -0.05 10 12 T(K) Nb#17 0.00 FCC FCW -0.01 0.000 H = 100 Oe -0.02 T_c = 9.2 K -0.002 (emn 0.03 W -0.04 -0.03 - 🚊 -0.004 Sample # 17 ZEC -0.006 Avg grain size -0.05 8.5 9.5 10.0 8.0 9.0 T (K) -0.06 ZFC ~ 40-45 micron 10 12 T(K)

Large grain Niobium from Jefferson Lab

Applied H = 100 Oe

Conclusion from these test results :

•Estimated H_{C1} : Polycrystalline samples from Fermilab grain size $30-35\mu \rightarrow H_{C1}\sim 1100$ Oe. T=5K grain size $40-45\mu \rightarrow H_{C1}\sim 1000$ Oe. T=4K

.Preliminary results indicate a slightly higher H_{C1} (1200 Oe at 6K) for the large grain (~ 1 mm) sample from Jefferson Lab.

 ${\rm \cdot}$ Presence of defects in the material leads to large hysteresis in M-H curves above ${\rm H}_{\rm C1.}{\rm \cdot}$ However, this may not affect the RF response below ${\rm H}_{\rm C1}{\rm \cdot}$

Future Plans for RRCAT

Facility for Superconducting RF cavity fabrication and processing.

Build a 40 MeV electron linac for IR photons.

