Cebaf energy upgrade program including re-work of CEBAF cavities

Joe Preble (for Jefferson Lab) SRF2007

U.S. DEPARTMENT OF ENERGY

Talk Outline

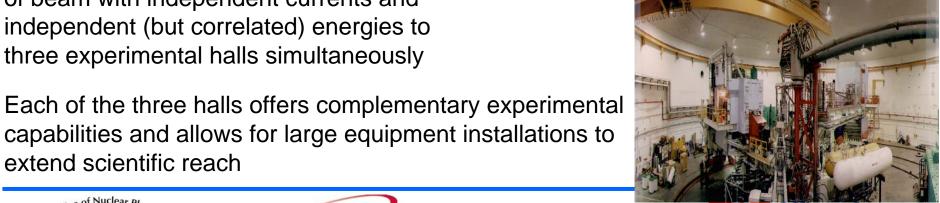
•CEBAF today and the 12 GeV project, machine and Physics programs

•Upgrade Cryomodule requirements and results

•CEBAF at 6 GeV the building block for 12 GeV, rework of CEBAF cryomodules

U.S. DEPARTMENT OF ENERGY

Jefferson Lab Today


2000 member International User Community exploring the quark-gluon structure of matter

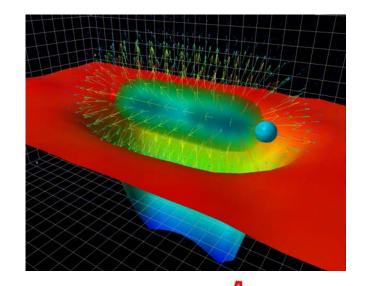
A recirculating superconducting linac provides 100% duty factor polarized beams of remarkable quality with energies up to 6 GeV

CEBAF's innovative design allows delivery of beam with independent currents and independent (but correlated) energies to three experimental halls simultaneously

capabilities and allows for large equipment installations to

extend scientific reach

The 12 GeV Upgrade Will Support Breakthrough Programs in Four Areas:

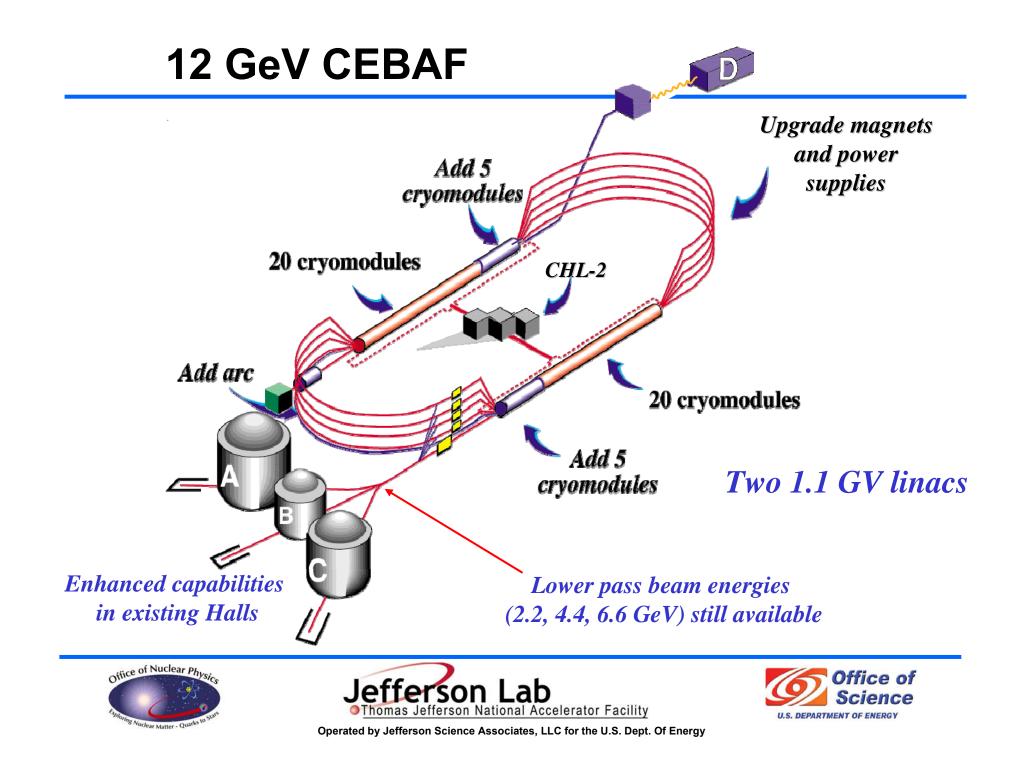

•The experimental study of the confinement of quarks – one of the outstanding questions of the 21st century physics (Hybrid Meson Program)

•Dramatic improvements in our knowledge of the fundamental quark-gluon structure of the nuclear building blocks (GPDs and Valence PDFs)

•Further exploration of the limits of our understanding of nuclei in terms of nucleons and the *N-N* force

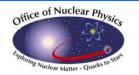
•Precision experiments with sensitivity to TeV scale physics beyond the Standard Model


•And other science we can't foresee

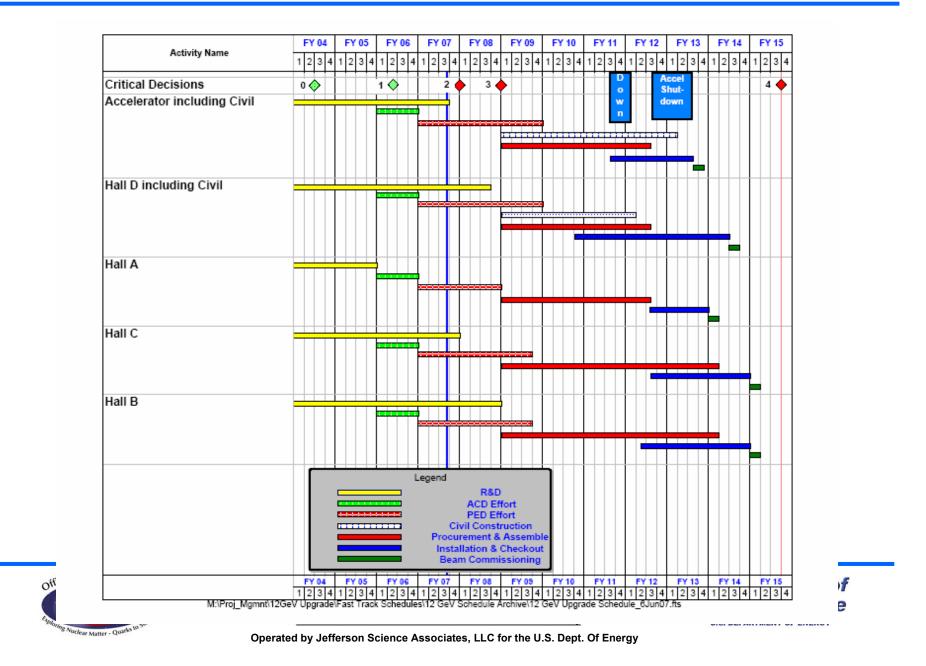


Office of

U.S. DEPARTMENT OF ENERGY



Project Planning (w/ Current DOE Guidance)


Begin construction (CD-3)	Fall 2008
Accelerator downSpring 2 thru Spr 2013Accelerator commissioningSummer Summer Fall 2013	Spring 2012 thru Spring 2013
Accelerator commissioning	Summer 2013
Re-start research program	Fall 2013
Start research at 12 GeV	Summer 2014

U.S. DEPARTMENT OF ENERGY

12 GeV Schedule

High-level Parameters

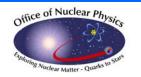
	Now	<u>Upgrade</u>
ACCELERATOR:		
Beam energy	6 GeV	12 GeV
Voltage of each linac	0.6 GV	1.1 GV
Number of recirculations	5	5 ¹ / ₂
Beam power (total program)	1 MW	1 MW
Beam current (hybrid mesons)	-	5 μΑ
Emittance	1 nm-rad	7 nm-rad
Energy spread	0.01%	0.02%
CRYOPLANT	4.5 kW	9 kW
EXPERIMENTAL HALLS	3	4
Office of Nuclear Physics Jefferson Lab Thomas Jefferson National Accelerato	r Facility	U.S. DEPARTMENT OF ENERGY

Operated by Jefferson Science Associates, LLC for the U.S. Dept. Of Energy

Nuclear Matter - Quarks

Cryomodule Voltage and Cavity Gradient

What is needed?

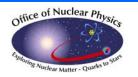

Present:	6 GeV / 5 passes = 1.2 GeV / pass = 0.6 GeV / linac
12 GeV:	12 GeV / 5.5 passes = 2.2 GeV / pass = 1.1 GeV / linac
	\Rightarrow Need to add 0.5 GV / linac

Adding 0.5 GV / linac

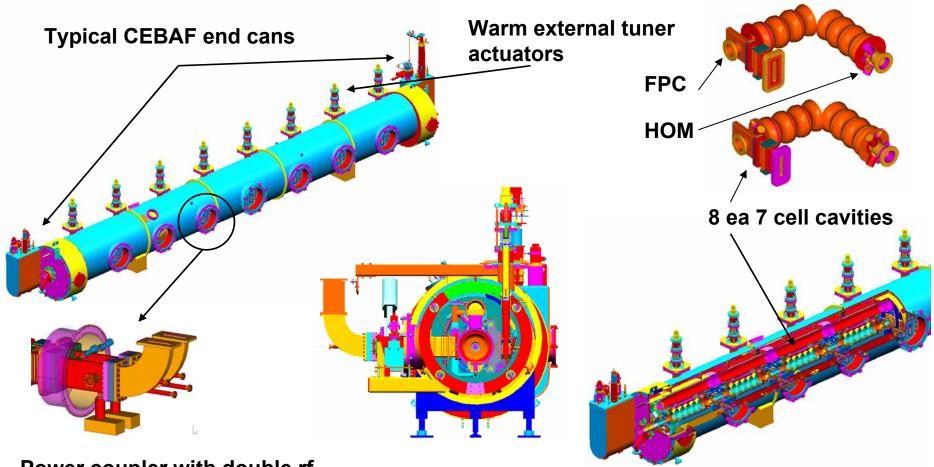
- There are 5 empty zones at the end of each linac
- One 100 MV cryomodule per zone is the obvious solution

"100" MV cryomodules (C100)

- Exact requirement is 98 MV (average for each linac)
- Add ~10% for operational contingency ⇒ <u>108 MV / cryomodule</u>
- 8 cavities/cryomodule
 7 λ/2 cells per cavity 5.6m, the current cryomodule length
- 108 MV ÷ 5.6 m = <u>19.2 MV / m (Original CEBAF Spec. was 5 MV/m</u> We've progressed significantly)



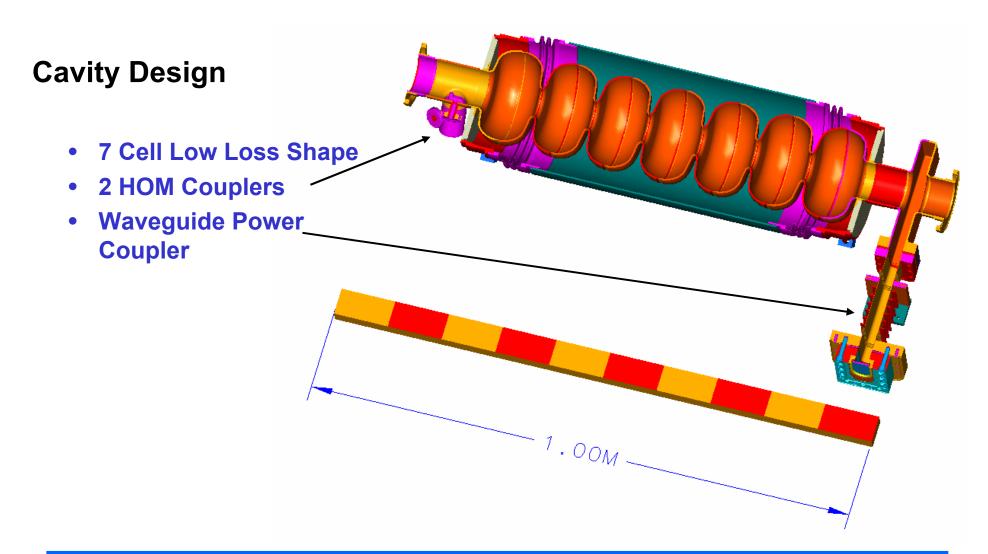
C100 Cryomodule: Key technical parameters

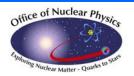

Voltage: (ens	≥ 108 MV emble average in each linac)
Heat budget:	
• 2 K	≤ 300 W
• 50 K	≤ 300 W
Slot Length:	9.8 m
Tuner resolution:	≤ 2 Hz
Fundamental Power Coupler,	FPC: 7.5/13 kW
Higher Order Mode, HOM dam	nping: Z < 6 x 108 Ω/cm2
Cryomodule Length	~8.5m



U.S. DEPARTMENT OF ENERGY

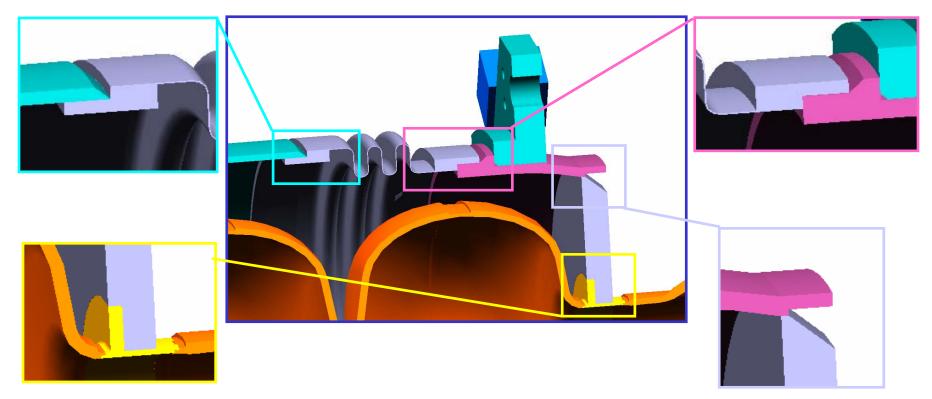
C100 Cryomodule

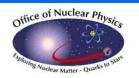

Power coupler with double rf window and interlocks



U.S. DEPARTMENT OF ENERGY

C100 Cryomodule Cavity

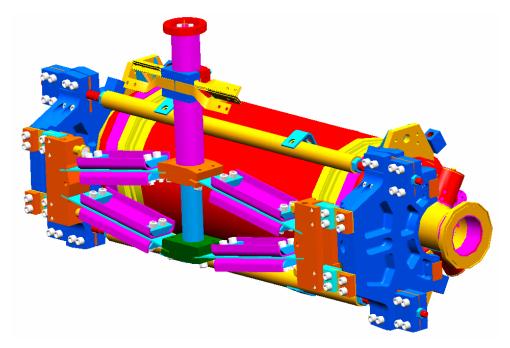


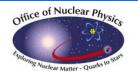

U.S. DEPARTMENT OF ENERGY

C100 Cryomodule Helium Vessel

Redesigned the helium vessel

- Incorporate the tuner interface
- Stainless Steel design

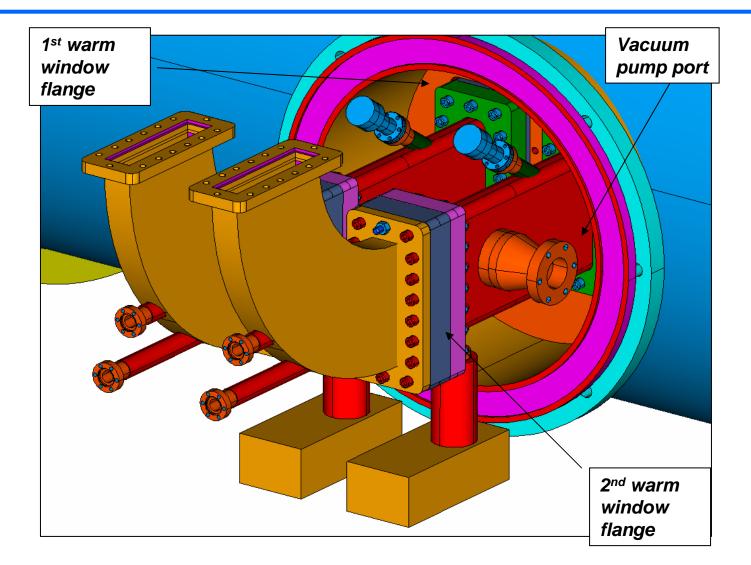


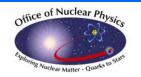


C100 Cryomodule Tuner

The cavity redesign allows us to use a tuner design that is in use in the CEBAF and FEL accelerators.

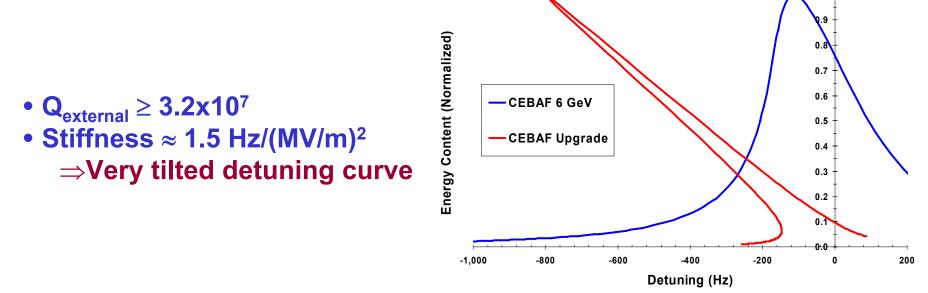
- Proven excellent performance for range, resolution and backlash, the LLRF and operators love them
- All actuator components are mounted outside the cryostat and can be repaired or replaced without warming the cryomodule





U.S. DEPARTMENT OF ENERGY

C100 Cryomodule RF Window R&D

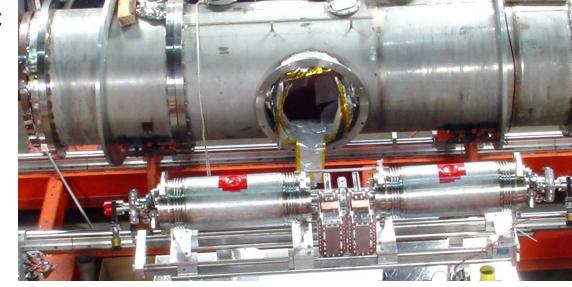

U.S. DEPARTMENT OF ENERGY

RF control

High-level performance requirements are the same as 6 GeV

- Amplitude noise: <1x10⁻⁴
- Phase noise: <0.2°

But: We must deal with narrow bandwidth and large Lorentz detuning

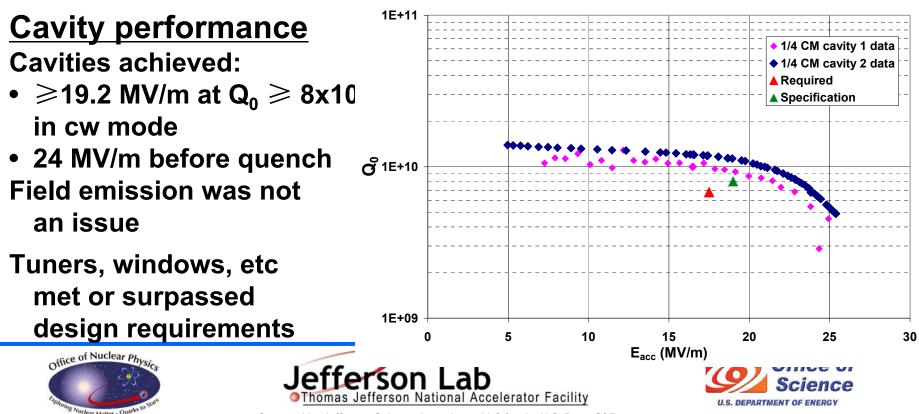


1.0

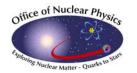
C100 Testing

Developed the plan for a 1/4 cryomodule test

- Integrated test in our Horizontal Test Bed (HTB) cryostat
- Thermal conditions, static and dynamic heat loads, temperature gradients, ..., will be the same as the full cryomodule design
- Complete design verification of all critical components
 - Cavity HOM Couplers
 - Double window FPC
 - Tuner
 - Helium vessel

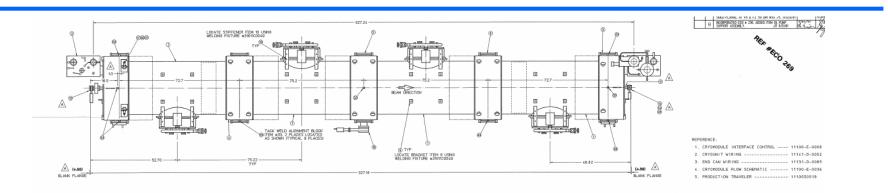


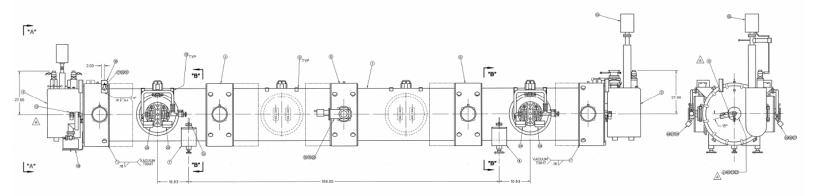
U.S. DEPARTMENT OF ENERGY

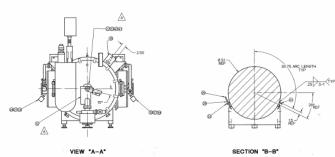

SRF Performance

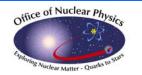
- <u>1st cryomodule intended to reach 100 MV (reported at</u> <u>PAC05):</u> Thermal design of the cavity endgroups limited performance Redesign needed (and now completed)
- Integrated cryomodule performance with the new design was tested in January, 2007 with a "1/4 cryomodule"

C100 Cryomodule Summary


- A cryomodule appropriate for the CEBAF 12 GeV upgrade has been designed and prototyped.
- Prototype components and assemblies have been built and tested
- All system performance requirements have been met

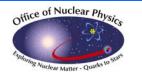





CEBAF cryomodule re-work, C50

	37					1	16	MDC 8VG-4000	GASKET KIT	OR EQUAL
	35					1	15	MDC BV-400DV	4" GATE VALVE MANUAL OPERATION	
	35					1	14	MDC 110008	BLANK FLANGE 2-3/4 NOM	OR EQUAL
6	34		25-28UNF X 75 LG 12 PT COUNTER BORE SCREW	304 S.S. SILVER PLATE		1	13	11131-C-0118	2 IN LIFT PLATE	
9	33	11103-8-0087	ALIGNMENT TARGET BLOCK			1	12	11131-D-D117	WARM BEAM TUBE ASSEMBLY (SUPPLY SDE)	
	32					1	11	11131-D-0116	WARM BEAN TUBE ASSEMBLY (RETURN SIDE)	
1	31	MDC 710002	CENTERING RING	OR EQUAL		8	10	31611-D-004D ITEM #7	STIFFENER (WELDING FIXTURE 31611-C-0049)	FURNISHED BY WBS 3
1	30	MDC 701002	HINGED CLAMP	OR EQUAL		16	9	31611-D-0040 ITEM #4	BRACKET (WELDING FIXTURE 31611-C-0049)	FURNISHED BY WES 3
8	29	11310-8-0000	ARC DETECTOR	-		1	δ	1118D-E-0028	STAND, DOWNSTREAM	
1 PKG	28	MDC 191004	COPPER GASKET	OR EQUAL	1.2	1	7	11180-E-0001	STAND, UPSTREAM	
1 PK6	27	MDC 191000	COPPER GASKET	OR EQUAL		1	6	11171-E-0001_3	BRIDGING CONPONENTS	
8	26		HEX NUT .5-13UNC	22		1	5	11171-E-0001_2	BRIDGING COMPONENTS	
-4	25		Ø 5-13 UNC X 8.00 LONG ALL THREAD	STEEL		1	.4	11171-E-0001_1	BRIDGING COMPONENTS	
4	24	11100-B-0033	ROLL ADJUSTMENT BRACKET			1	3	11131-E-0081_2	"L" SHAPED END CAN, RETURN	
2	23	PARKER 2-339	O-RINO 3.25 LD. X .19 SECTION NOM.	NTRLE		1	2	11131-E-0081_1	"L" SHAPED END CAN, SUPPLY	
	~~		action per of the					MILLE 0007	COMPARET LOOPLIN V	

U.S. DEPARTMENT OF ENERGY

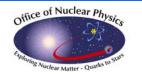

CEBAF re-work, C50

Performance of present CEBAF Linacs has been excellent but does degrade over time.

- Hurricane power outage resulted in an uncontrolled warm-up of the CEBAF and FEL accelerators
 Lost one complete and one partial cryomodule to helium leaks in vacuum joints
- Lost one cryomodule on a planned warm-up
- Cavity performance degradation has a yearly effect of ~ 65 MeV/yr

Requires rework of cryomodules to maintain the 6 GeV capability required for the 12 GeV upgrade and present physics program

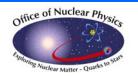
Original CEBAF plans were to rebuild 4 cryomodule/yr



U.S. DEPARTMENT OF ENERGY

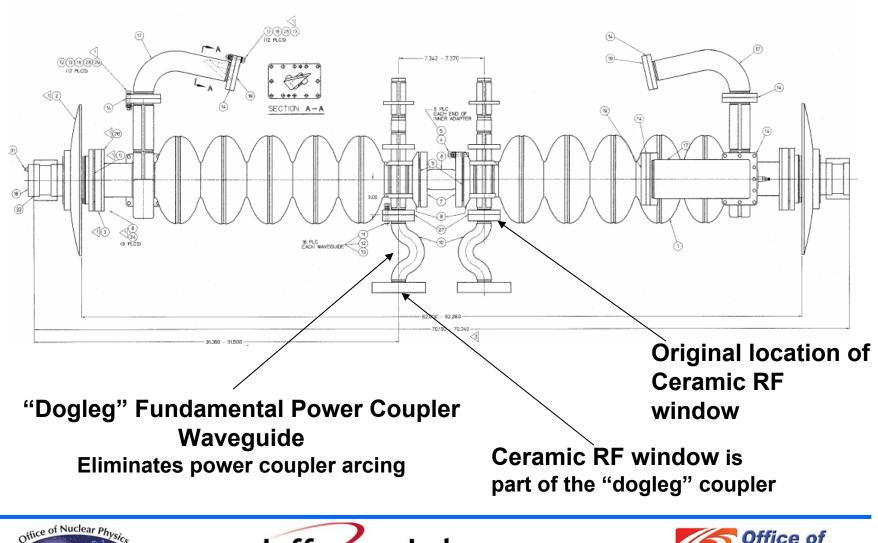
C50 Schedule, 10 cryomodules at 3/yr

EBAF C	RYOMODULE REFURBISHMEN	T(3/	YR) (FY06	i-09)					Data Dat	e 28-Sep	-07		С	urrent Dat	e 10-Oct	-07		
vity ID	Activity Name	200 S Oct N Dec Jan F Mar Apr M J .				2006				007				2008		2009			
C50 CEBAF	F CRYOMODULE REFURBISHMENT(3/YR) (FY06-09)	s o	Oct N Dec	Jan F M	ar Apr M J	J Jul Aug	S Oct N Dec	Jan F Mar	Apr M J	Jul A Se	p Oct N De	c Jan F M	ar Apr M	J Jul A	S Oct N De	c Jan F Ma	r Apr May J	Jul A S	C
C50401000M	C50 - CM1 START 2/18/05	8																	
C50401999M	C50 - CM1 FINISH 10/08/06								8			<u> </u>							+
C50402000M	C50 - CM2 START 5/01/06				8														
C50402999M	C50 - CM2 FINISH 4/09/07			<u> </u>						\$	•	+	+						ł
C50403000M	C50 - CM3 START 09/01/06				8														
C50403999M	C50 - CM3 FINISH 06/08/07										•								+
C50404000M	C50 - CM4 START 01/01/07					8													
C50404999M	C50 - CM4 FINISH 10/31/07							+			0	•	+		-	+			+
C50405000M	C50 - CM5 START 05/01/07								2										
C50405999M	C50 - CM5 FINISH 02/29/08			 				 				~	. -				ļ		-
C50406000M	C50 - CM6 START 09/04/07									• 。									
C50406999M	C50 - CM6 FINISH 08/30/08	┝╍┿										+	•	<u>ہ</u>					+
C50407000M	C50 - CM7 START 01/02/08									٠		6							
C50407999M	C50 - CM7 FINISH 10/31/08			<u> </u>				+				<u> </u>		•	•				+
C50408000M	C50 - CM8 START 05/01/08												8						
C50408999M	C50 - CM8 FINISH 02/28/09															8			+
C50409000M	C50 - CM9 START 09/02/08													8					
C50409999M	C50 - CM9 FINISH 06/30/09											+					8		÷
C51401000M	C50 - CM10 START 01/02/09															8	Ť		
C51401999M	C50 - CM10 FINISH 10/31/09			+				+				÷							\$
																			ľ
Current W			seline 04/30		% Comp						SRF(C5)) * MILEST(ONE LAYOU	(11x17)		Jeffe	Pron La	b	_
Current W					% Comp Summar						SRF(C5)) * MILEST(Page			LAYOUT (11x17) 1		Jeffe	Jefferson La	Jefferson Lab

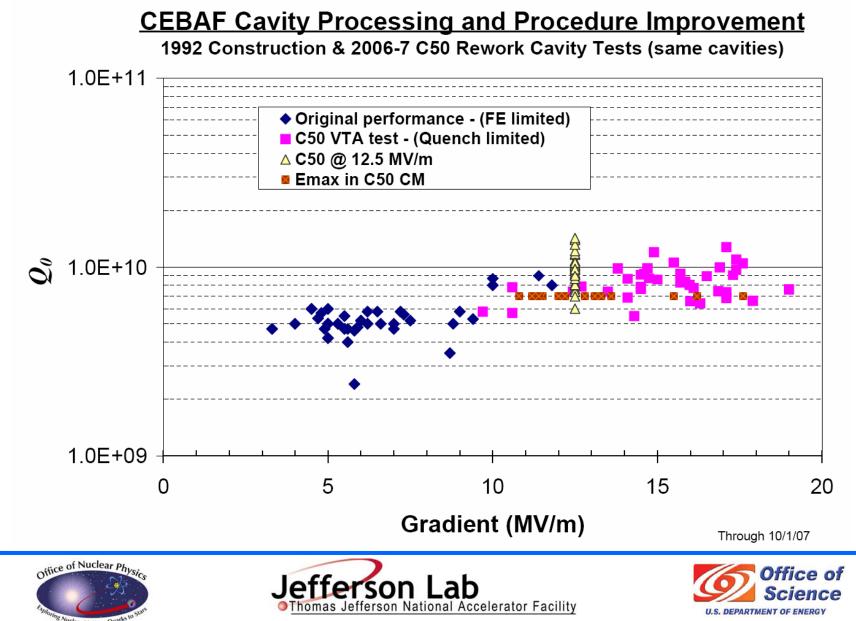


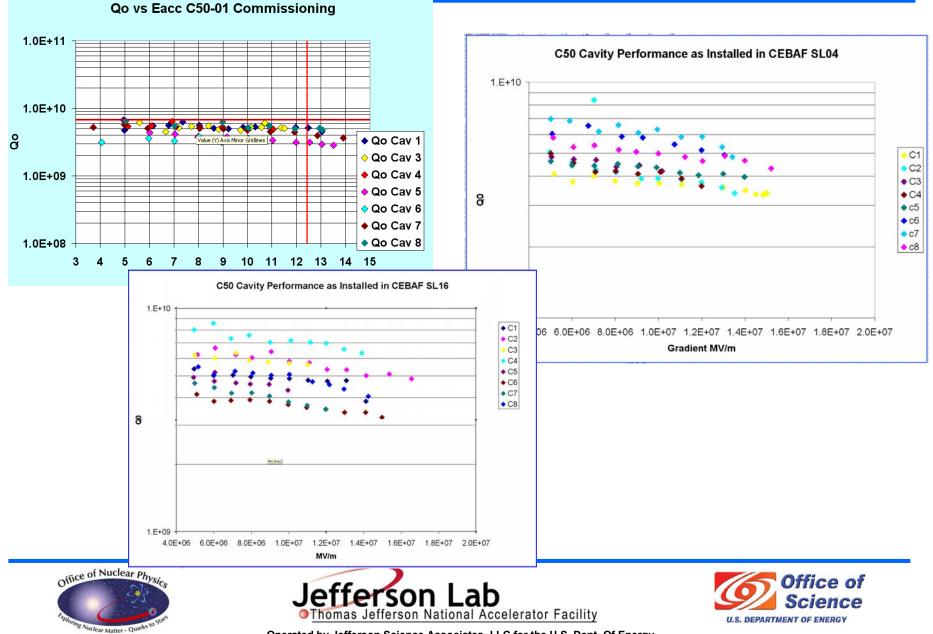
CEBAF re-work, C50 Project

Limited changes to the original CEBAF construction

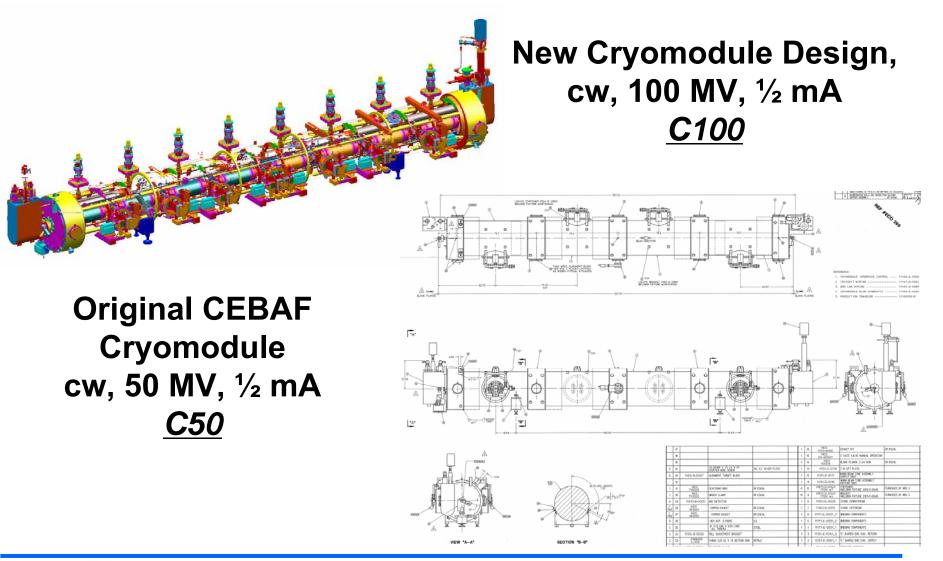

- Moved cold ceramic RF window in the power coupler that is the main source of cavity trips in the machine
- Added a "dogleg" waveguide to remove line of sight from the beamline to the cold ceramic window
- Improved the cavity tuner mechanical linkage to reduce backlash
- Changed warm polyethylene RF window to ceramic
- Using present "best" practices to process cavities
 Closed Chemistry
 High Pressure Rinsing
 Hydrogen de-gassing
 Controlled clean room procedures

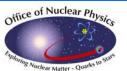
CEBAF re-work, C50, cavity pair





U.S. DEPARTMENT OF ENERGY


CEBAF cavity performance before and after C50



C50 Commissioning

CEBAF cavity performance before and after C50

U.S. DEPARTMENT OF ENERGY